{"title":"Universal Localizations, Atiyah Conjectures and Graphs of Groups","authors":"Pablo Sánchez-Peralta","doi":"10.1007/s00039-025-00710-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a countable group that is the fundamental group of a graph of groups with finite edge groups and vertex groups satisfying the strong Atiyah conjecture over <span>\\(K \\subseteq \\mathbb{C}\\)</span> a field closed under complex conjugation. Assume that the orders of finite subgroups of <i>G</i> are bounded above. We show that <i>G</i> satisfies the strong Atiyah conjecture over <i>K</i>. In particular, this implies that the strong Atiyah conjecture is closed under free products. Moreover, we prove that the ∗-regular closure of <i>K</i>[<i>G</i>] in <span>\\(\\mathcal{U}(G)\\)</span>, <span>\\(\\mathcal{R}_{K[G]}\\)</span>, is a universal localization of the graph of rings associated to the graph of groups, where the rings are the corresponding ∗-regular closures. As a result, we obtain that the algebraic and center-valued Atiyah conjecture over <i>K</i> are also closed under the graph of groups construction as long as the edge groups are finite. We also infer some consequences on the structure of the <i>K</i><sub>0</sub> and <i>K</i><sub>1</sub>-groups of <span>\\(\\mathcal{R}_{K[G]}\\)</span>. The techniques developed enable us to prove that <i>K</i>[<i>G</i>] fulfills the strong, algebraic and center-valued Atiyah conjectures, and that <span>\\(\\mathcal{R}_{K[G]}\\)</span> is the universal localization of <i>K</i>[<i>G</i>] over the set of all matrices that become invertible in <span>\\(\\mathcal{U}(G)\\)</span>, provided that <i>G</i> belongs to a certain class of groups <span>\\(\\mathcal{T}_{\\mathcal{VLI}}\\)</span>, which contains in particular virtually-{locally indicable} groups that are the fundamental group of a graph of virtually free groups.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"15 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00710-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a countable group that is the fundamental group of a graph of groups with finite edge groups and vertex groups satisfying the strong Atiyah conjecture over \(K \subseteq \mathbb{C}\) a field closed under complex conjugation. Assume that the orders of finite subgroups of G are bounded above. We show that G satisfies the strong Atiyah conjecture over K. In particular, this implies that the strong Atiyah conjecture is closed under free products. Moreover, we prove that the ∗-regular closure of K[G] in \(\mathcal{U}(G)\), \(\mathcal{R}_{K[G]}\), is a universal localization of the graph of rings associated to the graph of groups, where the rings are the corresponding ∗-regular closures. As a result, we obtain that the algebraic and center-valued Atiyah conjecture over K are also closed under the graph of groups construction as long as the edge groups are finite. We also infer some consequences on the structure of the K0 and K1-groups of \(\mathcal{R}_{K[G]}\). The techniques developed enable us to prove that K[G] fulfills the strong, algebraic and center-valued Atiyah conjectures, and that \(\mathcal{R}_{K[G]}\) is the universal localization of K[G] over the set of all matrices that become invertible in \(\mathcal{U}(G)\), provided that G belongs to a certain class of groups \(\mathcal{T}_{\mathcal{VLI}}\), which contains in particular virtually-{locally indicable} groups that are the fundamental group of a graph of virtually free groups.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.