Hierarchical memories: Simulating quantum LDPC codes with local gates

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-05-05 DOI:10.22331/q-2025-05-05-1728
Christopher A. Pattison, Anirudh Krishna, John Preskill
{"title":"Hierarchical memories: Simulating quantum LDPC codes with local gates","authors":"Christopher A. Pattison, Anirudh Krishna, John Preskill","doi":"10.22331/q-2025-05-05-1728","DOIUrl":null,"url":null,"abstract":"Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing efficient fault-tolerant quantum memories. However, if physical gates are subject to geometric-locality constraints, it becomes challenging to realize these codes. In this paper, we construct a new family of $[[N,K,D]]$ codes, referred to as hierarchical codes, that encode a number of logical qubits $K = \\Omega(N/\\log(N)^2)$. The $N^{th}$ element of this code family is obtained by concatenating a constant-rate quantum LDPC code with a surface code; nearest-neighbor gates in two dimensions are sufficient to implement the corresponding syndrome-extraction circuit and achieve a threshold. Below threshold the logical failure rate vanishes superpolynomially as a function of the distance $D(N)$. We present a bilayer architecture for implementing the syndrome-extraction circuit, and estimate the logical failure rate for this architecture. Under conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all logical qubits are encoded in the surface code.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"35 1","pages":"1728"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-05-1728","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing efficient fault-tolerant quantum memories. However, if physical gates are subject to geometric-locality constraints, it becomes challenging to realize these codes. In this paper, we construct a new family of $[[N,K,D]]$ codes, referred to as hierarchical codes, that encode a number of logical qubits $K = \Omega(N/\log(N)^2)$. The $N^{th}$ element of this code family is obtained by concatenating a constant-rate quantum LDPC code with a surface code; nearest-neighbor gates in two dimensions are sufficient to implement the corresponding syndrome-extraction circuit and achieve a threshold. Below threshold the logical failure rate vanishes superpolynomially as a function of the distance $D(N)$. We present a bilayer architecture for implementing the syndrome-extraction circuit, and estimate the logical failure rate for this architecture. Under conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all logical qubits are encoded in the surface code.
分层存储器:用局部门模拟量子LDPC码
恒速率低密度奇偶校验(LDPC)码是构建高效容错量子存储器的理想选择。然而,如果物理门受到几何局部性约束,实现这些编码就变得很困难。在本文中,我们构造了一个新的$[[N,K,D]]$码族,称为分层码,它编码了许多逻辑量子位$K = \Omega(N/\log(N)^2)$。该码族的$N^{th}$元素是通过将恒定速率量子LDPC码与表面码串联得到的;二维最近邻门足以实现相应的综合征提取电路并实现阈值。在阈值以下,逻辑故障率作为距离的函数以超多项式形式消失$D(N)$。我们提出了一个双层架构来实现综合征提取电路,并估计了该架构的逻辑故障率。在保守假设下,我们发现层次编码优于基本编码,其中所有逻辑量子位都编码在表面编码中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信