Piotr Czarnik, Michael McKerns, Andrew T. Sornborger, Lukasz Cincio
{"title":"Improving the efficiency of learning-based error mitigation","authors":"Piotr Czarnik, Michael McKerns, Andrew T. Sornborger, Lukasz Cincio","doi":"10.22331/q-2025-05-05-1727","DOIUrl":null,"url":null,"abstract":"Error mitigation will play an important role in practical applications of near-term noisy quantum computers. Current error mitigation methods typically concentrate on correction quality at the expense of frugality (as measured by the number of additional calls to quantum hardware). To fill the need for highly accurate, yet inexpensive techniques, we introduce an error mitigation scheme that builds on Clifford data regression (CDR). The scheme improves the frugality by carefully choosing the training data and exploiting the symmetries of the problem. We test our approach by correcting long range correlators of the ground state of XY Hamiltonian on IBM Toronto quantum computer. We find that our method is an order of magnitude cheaper while maintaining the same accuracy as the original CDR approach. The efficiency gain enables us to obtain a factor of $10$ improvement on the unmitigated results with the total budget as small as $2\\cdot10^5$ shots. Furthermore, we demonstrate orders of magnitude improvements in frugality for mitigation of energy of the LiH ground state simulated with IBM's Ourense-derived noise model.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"8 1","pages":"1727"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-05-1727","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Error mitigation will play an important role in practical applications of near-term noisy quantum computers. Current error mitigation methods typically concentrate on correction quality at the expense of frugality (as measured by the number of additional calls to quantum hardware). To fill the need for highly accurate, yet inexpensive techniques, we introduce an error mitigation scheme that builds on Clifford data regression (CDR). The scheme improves the frugality by carefully choosing the training data and exploiting the symmetries of the problem. We test our approach by correcting long range correlators of the ground state of XY Hamiltonian on IBM Toronto quantum computer. We find that our method is an order of magnitude cheaper while maintaining the same accuracy as the original CDR approach. The efficiency gain enables us to obtain a factor of $10$ improvement on the unmitigated results with the total budget as small as $2\cdot10^5$ shots. Furthermore, we demonstrate orders of magnitude improvements in frugality for mitigation of energy of the LiH ground state simulated with IBM's Ourense-derived noise model.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.