{"title":"Measuring quantum relative entropy with finite-size effect","authors":"Masahito Hayashi","doi":"10.22331/q-2025-05-05-1725","DOIUrl":null,"url":null,"abstract":"We study the estimation of relative entropy $D(\\rho\\|\\sigma)$ when $\\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"73 1","pages":"1725"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-05-1725","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the estimation of relative entropy $D(\rho\|\sigma)$ when $\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.