Soňa Krajčovičová, Thomas Wharton, Claudia L. Driscoll, Thomas A King, Mark R. Howarth, David R Spring
{"title":"A Platform for SpyCatcher Conjugation to Native Antibodies","authors":"Soňa Krajčovičová, Thomas Wharton, Claudia L. Driscoll, Thomas A King, Mark R. Howarth, David R Spring","doi":"10.1039/d5sc02286j","DOIUrl":null,"url":null,"abstract":"Protein-antibody conjugates represent major advancements in targeted therapeutics. However, platforms enabling ‘off-the shelf’ antibody conjugation are seldom reported. The SpyTag/SpyCatcher system, known for its stable isopeptide bond formation, is widely used to engineer protein architectures and study protein folding. This work introduces the fusion of SpyCatcher with native antibodies using cysteine-reactive tetra-divinylpyrimidine (TetraDVP)-SpyTag linkers. This platform allows for the rapid and stable conjugation of a native antibody with SpyCatcher proteins. As a proof of concept, the HER2-targeting antibody trastuzumab was conjugated to different SpyCatcher proteins using a TetraDVP-SpyTag linker, producing robust conjugates that retained specific binding to HER2-positive cells with excellent conversion rates. To demonstrate the platform’s broader applicability, the TetraDVP-SpyTag linker was successfully conjugated to additional native IgG1 and IgG4 antibodies (durvalumab, brentuximab, cetuximab, and gemtuzumab) with similarly high efficiency than trastuzumab. Moreover, a scalable solid-phase synthesis of TetraDVP linkers has been developed, achieving high yields and purity. This innovative platform enables precise, single-step antibody bioconjugation, offering strong potential for protein-antibody conjugate synthesis. With applications across therapeutics and diagnostics, this method advances antibody-based drug development.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"46 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc02286j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-antibody conjugates represent major advancements in targeted therapeutics. However, platforms enabling ‘off-the shelf’ antibody conjugation are seldom reported. The SpyTag/SpyCatcher system, known for its stable isopeptide bond formation, is widely used to engineer protein architectures and study protein folding. This work introduces the fusion of SpyCatcher with native antibodies using cysteine-reactive tetra-divinylpyrimidine (TetraDVP)-SpyTag linkers. This platform allows for the rapid and stable conjugation of a native antibody with SpyCatcher proteins. As a proof of concept, the HER2-targeting antibody trastuzumab was conjugated to different SpyCatcher proteins using a TetraDVP-SpyTag linker, producing robust conjugates that retained specific binding to HER2-positive cells with excellent conversion rates. To demonstrate the platform’s broader applicability, the TetraDVP-SpyTag linker was successfully conjugated to additional native IgG1 and IgG4 antibodies (durvalumab, brentuximab, cetuximab, and gemtuzumab) with similarly high efficiency than trastuzumab. Moreover, a scalable solid-phase synthesis of TetraDVP linkers has been developed, achieving high yields and purity. This innovative platform enables precise, single-step antibody bioconjugation, offering strong potential for protein-antibody conjugate synthesis. With applications across therapeutics and diagnostics, this method advances antibody-based drug development.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.