{"title":"BackdoorBench: A Comprehensive Benchmark and Analysis of Backdoor Learning","authors":"Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, Mingli Zhu, Ruotong Wang, Li Liu, Chao Shen","doi":"10.1007/s11263-025-02447-x","DOIUrl":null,"url":null,"abstract":"<p>In recent years, backdoor learning has attracted increasing attention due to its effectiveness on investigating the adversarial vulnerability of artificial intelligence (AI) systems. Several seminal backdoor attack and defense algorithms have been developed, forming an increasingly fierce arms race. However, since backdoor learning involves various factors in different stages of an AI system (e.g., data preprocessing, model training algorithm, model activation), there have been diverse settings in existing works, causing unfair comparisons or unreliable conclusions (e.g., misleading, biased, or even false conclusions). Hence, it is urgent to build a unified and standardized benchmark of backdoor learning, such that we can track real progress and design a roadmap for the future development of this literature. To that end, we construct a comprehensive benchmark of backdoor learning, dubbed <i>BackdoorBench</i>. Our benchmark makes three valuable contributions to the research community. (1) We provide an integrated implementation of representative backdoor learning algorithms (currently including 20 attack algorithms and 32 defense algorithms), based on an extensible modular-based codebase. (2) We conduct comprehensive evaluations of the implemented algorithms on 4 models and 4 datasets, leading to 11,492 pairs of attack-against-defense evaluations in total. (3) Based on above evaluations, we present abundant analysis from 10 perspectives via 23 analysis tools, and reveal several inspiring insights about backdoor learning. We hope that our efforts could build a solid foundation of backdoor learning to facilitate researchers to investigate existing algorithms, develop more innovative algorithms, and explore the intrinsic mechanism of backdoor learning. Finally, we have created a user-friendly website at https://backdoorbench.github.io/, which collects all the important information of BackdoorBench, including the link to Codebase, Docs, Leaderboard, and Model Zoo.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"115 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02447-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, backdoor learning has attracted increasing attention due to its effectiveness on investigating the adversarial vulnerability of artificial intelligence (AI) systems. Several seminal backdoor attack and defense algorithms have been developed, forming an increasingly fierce arms race. However, since backdoor learning involves various factors in different stages of an AI system (e.g., data preprocessing, model training algorithm, model activation), there have been diverse settings in existing works, causing unfair comparisons or unreliable conclusions (e.g., misleading, biased, or even false conclusions). Hence, it is urgent to build a unified and standardized benchmark of backdoor learning, such that we can track real progress and design a roadmap for the future development of this literature. To that end, we construct a comprehensive benchmark of backdoor learning, dubbed BackdoorBench. Our benchmark makes three valuable contributions to the research community. (1) We provide an integrated implementation of representative backdoor learning algorithms (currently including 20 attack algorithms and 32 defense algorithms), based on an extensible modular-based codebase. (2) We conduct comprehensive evaluations of the implemented algorithms on 4 models and 4 datasets, leading to 11,492 pairs of attack-against-defense evaluations in total. (3) Based on above evaluations, we present abundant analysis from 10 perspectives via 23 analysis tools, and reveal several inspiring insights about backdoor learning. We hope that our efforts could build a solid foundation of backdoor learning to facilitate researchers to investigate existing algorithms, develop more innovative algorithms, and explore the intrinsic mechanism of backdoor learning. Finally, we have created a user-friendly website at https://backdoorbench.github.io/, which collects all the important information of BackdoorBench, including the link to Codebase, Docs, Leaderboard, and Model Zoo.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.