Fundamental understanding of microbiologically influenced corrosion inhibition via biomineralization: A critical review

IF 11.4 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Meiying Lv, Min Du, Xingchuan Zhao, Yongxu Du
{"title":"Fundamental understanding of microbiologically influenced corrosion inhibition via biomineralization: A critical review","authors":"Meiying Lv, Min Du, Xingchuan Zhao, Yongxu Du","doi":"10.1080/10643389.2025.2469860","DOIUrl":null,"url":null,"abstract":"Corrosion is a pervasive issue that poses a significant risk across various industries, causing economic losses and safety hazards. Traditional corrosion control technologies may have some limitations in application, such as high cost, cumbersome construction, and even environmental pollution. Biomineralization, as an emerging anti-corrosion strategy, is effective and eco-friendly, demonstrating <i>in situ</i> self-healing activity. This review provides a comprehensive overview of recent advances in utilizing this novel strategy for corrosion inhibition and the mechanisms involved. Furthermore, the different types and functional properties of typical biominerals are discussed, as well as the potential applications of mineralized bacteria and species interactions. Lastly, this review outlines current challenges in this field, such as species selection, microscale manipulation, large-scale applications and biosafety, and proposes future directions for further research, offering valuable insights into the evolving landscape of biomineralization technology in corrosion protection.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"1 1","pages":"1-23"},"PeriodicalIF":11.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2025.2469860","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Corrosion is a pervasive issue that poses a significant risk across various industries, causing economic losses and safety hazards. Traditional corrosion control technologies may have some limitations in application, such as high cost, cumbersome construction, and even environmental pollution. Biomineralization, as an emerging anti-corrosion strategy, is effective and eco-friendly, demonstrating in situ self-healing activity. This review provides a comprehensive overview of recent advances in utilizing this novel strategy for corrosion inhibition and the mechanisms involved. Furthermore, the different types and functional properties of typical biominerals are discussed, as well as the potential applications of mineralized bacteria and species interactions. Lastly, this review outlines current challenges in this field, such as species selection, microscale manipulation, large-scale applications and biosafety, and proposes future directions for further research, offering valuable insights into the evolving landscape of biomineralization technology in corrosion protection.
通过生物矿化对微生物影响的腐蚀抑制的基本理解:一个重要的回顾
腐蚀是一个普遍存在的问题,在各个行业都构成重大风险,造成经济损失和安全隐患。传统的腐蚀控制技术在应用中存在成本高、施工繁琐、甚至污染环境等局限性。生物矿化作为一种新兴的抗腐蚀策略,具有原位自修复活性,有效且环保。本文综述了利用这种新型缓蚀策略及其机制的最新进展。此外,还讨论了典型生物矿物的不同类型和功能特性,以及矿化细菌和物种相互作用的潜在应用。最后,综述了生物矿化技术在物种选择、微尺度操作、大规模应用和生物安全等方面面临的挑战,并提出了未来的研究方向,为生物矿化技术在防腐领域的发展前景提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
27.30
自引率
1.60%
发文量
64
审稿时长
2 months
期刊介绍: Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics. Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges. The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信