Giuseppe Biondi-Zoccai, Arjun Mahajan, Dylan Powell, Mariangela Peruzzi, Roberto Carnevale, Giacomo Frati
{"title":"Advancing cardiovascular care through actionable AI innovation","authors":"Giuseppe Biondi-Zoccai, Arjun Mahajan, Dylan Powell, Mariangela Peruzzi, Roberto Carnevale, Giacomo Frati","doi":"10.1038/s41746-025-01621-2","DOIUrl":null,"url":null,"abstract":"Despite significant advances, the prevention and management of cardiovascular disease remain challenging, especially for ischemic heart disease (IHD). Current clinical decision-making relies heavily on physician expertise, guideline-directed therapies, and static risk scores, which often inadequately accommodate individual patient complexity. Machine learning (ML) and artificial intelligence (AI), particularly reinforcement learning (RL), may augment current physician-driven approaches and provide enhanced cardiovascular disease prevention and management. Indeed, offline RL refers to a class of ML algorithms that learn optimal decision-making policies from a fixed dataset of previously collected experiences—such as electronic health records or registries—without the need for active, real-time interaction with the clinical environment. This approach enables the safe development of treatment strategies in high-stakes domains where experimentation on live patients could be unethical or impractical. Notably, offline RL models hold the promise of optimizing decision-making in complex clinical settings, such as revascularization strategies for coronary artery disease. However, challenges remain in integrating AI into practice, ensuring interpretability, maintaining performance, and proving cost-effectiveness. Ultimately, validation, integration, and collaboration among clinicians, researchers, and policymakers are crucial for transforming AI-driven solutions into practical, patient-centered cardiovascular care improvements, pending prospective (and hopefully randomized) validation.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"25 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01621-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant advances, the prevention and management of cardiovascular disease remain challenging, especially for ischemic heart disease (IHD). Current clinical decision-making relies heavily on physician expertise, guideline-directed therapies, and static risk scores, which often inadequately accommodate individual patient complexity. Machine learning (ML) and artificial intelligence (AI), particularly reinforcement learning (RL), may augment current physician-driven approaches and provide enhanced cardiovascular disease prevention and management. Indeed, offline RL refers to a class of ML algorithms that learn optimal decision-making policies from a fixed dataset of previously collected experiences—such as electronic health records or registries—without the need for active, real-time interaction with the clinical environment. This approach enables the safe development of treatment strategies in high-stakes domains where experimentation on live patients could be unethical or impractical. Notably, offline RL models hold the promise of optimizing decision-making in complex clinical settings, such as revascularization strategies for coronary artery disease. However, challenges remain in integrating AI into practice, ensuring interpretability, maintaining performance, and proving cost-effectiveness. Ultimately, validation, integration, and collaboration among clinicians, researchers, and policymakers are crucial for transforming AI-driven solutions into practical, patient-centered cardiovascular care improvements, pending prospective (and hopefully randomized) validation.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.