{"title":"Soft-Clipping Autoregressive Models for Ordinal Time Series","authors":"Christian H. Weiß, Osama Swidan","doi":"10.1002/asmb.70015","DOIUrl":null,"url":null,"abstract":"<p>The linear autoregressive models are among the most popular models in the practice of time series analysis, which constitutes an incentive to adapt them to ordinal time series as well. Our starting point for modeling ordinal time series data is the latent variable approach to define a generalized linear model. This method, however, typically leads to a non-linear relationship between the past observations and the current conditional cumulative distribution function (cdf). To overcome this problem, we use the soft-clipping link to obtain an approximately linear model structure and propose a wide and flexible class of soft-clipping autoregressive (scAR) models. The constraints imposed on the model parameters allow us to identify relevant special cases of the scAR model family. We study the calculation of transition probabilities as well as approximate formulae for the CDF. Our proposals are illustrated by numerical examples and simulation experiments, where the performance of maximum likelihood estimation as well as model selection is analyzed. The novel model family is successfully applied to a real-world ordinal time series from finance.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.70015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The linear autoregressive models are among the most popular models in the practice of time series analysis, which constitutes an incentive to adapt them to ordinal time series as well. Our starting point for modeling ordinal time series data is the latent variable approach to define a generalized linear model. This method, however, typically leads to a non-linear relationship between the past observations and the current conditional cumulative distribution function (cdf). To overcome this problem, we use the soft-clipping link to obtain an approximately linear model structure and propose a wide and flexible class of soft-clipping autoregressive (scAR) models. The constraints imposed on the model parameters allow us to identify relevant special cases of the scAR model family. We study the calculation of transition probabilities as well as approximate formulae for the CDF. Our proposals are illustrated by numerical examples and simulation experiments, where the performance of maximum likelihood estimation as well as model selection is analyzed. The novel model family is successfully applied to a real-world ordinal time series from finance.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.