Zhipeng Wang, Jiajun Ma, Gui Xue, Feida Gu, Ruochen Ren, Yanmin Zhou, Bin He
{"title":"Bolt Looseness Quantitative Visual Detection With Cross-Modal Fusion","authors":"Zhipeng Wang, Jiajun Ma, Gui Xue, Feida Gu, Ruochen Ren, Yanmin Zhou, Bin He","doi":"10.1155/stc/2282684","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Intelligent bolt looseness detection systems offer significant potential for accurately promptly detecting bolt looseness. Bolt looseness detection in high-speed train undercarriages is challenging due to the low-texture surfaces of structural parts and variations of illumination and viewpoint in typical maintenance scenes. These factors hinder the quantification detection of bolt looseness using traditional 2D visual inspection methods. In this paper, we present a cross-modal fusion-based method for the quantification detection of bolt looseness in high-speed train undercarriages. We propose a cross-modal fusion approach using a cross-modal transformer, which integrates 2D images and 3D point clouds to improve adaptability to varying illumination conditions in maintenance scenes. To address geometric projection distortions caused by varying-view perspective transformations, we use the height difference between the bolt cap and the fastening plane in point clouds as the criterion for bolt loosening. The experimental results indicate that the proposed method outperforms the base-line on our dataset of 5823 annotated RGB-D images from a locomotive depot, achieving an average measurement error of 0.39 mm.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/2282684","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/2282684","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent bolt looseness detection systems offer significant potential for accurately promptly detecting bolt looseness. Bolt looseness detection in high-speed train undercarriages is challenging due to the low-texture surfaces of structural parts and variations of illumination and viewpoint in typical maintenance scenes. These factors hinder the quantification detection of bolt looseness using traditional 2D visual inspection methods. In this paper, we present a cross-modal fusion-based method for the quantification detection of bolt looseness in high-speed train undercarriages. We propose a cross-modal fusion approach using a cross-modal transformer, which integrates 2D images and 3D point clouds to improve adaptability to varying illumination conditions in maintenance scenes. To address geometric projection distortions caused by varying-view perspective transformations, we use the height difference between the bolt cap and the fastening plane in point clouds as the criterion for bolt loosening. The experimental results indicate that the proposed method outperforms the base-line on our dataset of 5823 annotated RGB-D images from a locomotive depot, achieving an average measurement error of 0.39 mm.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.