Research on the tongue-induced vortex in the semi-spiral suction chamber and its influence on cavitation

IF 2.5 3区 工程技术
Yu-xin Du, Jia-mei Ma, Shi-jie Zhang, Hong-zhong Lu, Chao-yue Wang, Zhi-feng Yao
{"title":"Research on the tongue-induced vortex in the semi-spiral suction chamber and its influence on cavitation","authors":"Yu-xin Du,&nbsp;Jia-mei Ma,&nbsp;Shi-jie Zhang,&nbsp;Hong-zhong Lu,&nbsp;Chao-yue Wang,&nbsp;Zhi-feng Yao","doi":"10.1007/s42241-025-0008-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to elucidate the vortex evolution characteristics generated by the tongue of the semi-spiral suction chamber and its influence on the cavitation of the pump. Based on the turbulent viscosity correction model, the internal flow of a centrifugal pump with a specific speed of 160 was simulated, and experimental data verified the simulation. This study focuses on analyzing the conditions of large flow rate, high-efficiency, and partial flow rate. The results show that the tongue will induce a tongue-induced vortex. The tongue-induced vortex extends from the tongue region to the impeller region, and its shape is curved and slender. The shape and volume of the tongue-induced vortex are related to the flow rate. The vortex’s shape is blurred and small in the partial flow rate. There is a complete and obvious curved slender vortex in the high-efficiency zone. In large flow conditions, the vortex’s shape is consistent with the high-efficiency zone and the volume is larger. The vortex’s strength is positively correlated with the circulation of the inlet, which is in the suction chamber. The tongue-induced vortex affects the distribution position of the low-pressure zone on the blade, thereby promoting the leading edge cavitation.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"37 1","pages":"115 - 123"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-025-0008-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to elucidate the vortex evolution characteristics generated by the tongue of the semi-spiral suction chamber and its influence on the cavitation of the pump. Based on the turbulent viscosity correction model, the internal flow of a centrifugal pump with a specific speed of 160 was simulated, and experimental data verified the simulation. This study focuses on analyzing the conditions of large flow rate, high-efficiency, and partial flow rate. The results show that the tongue will induce a tongue-induced vortex. The tongue-induced vortex extends from the tongue region to the impeller region, and its shape is curved and slender. The shape and volume of the tongue-induced vortex are related to the flow rate. The vortex’s shape is blurred and small in the partial flow rate. There is a complete and obvious curved slender vortex in the high-efficiency zone. In large flow conditions, the vortex’s shape is consistent with the high-efficiency zone and the volume is larger. The vortex’s strength is positively correlated with the circulation of the inlet, which is in the suction chamber. The tongue-induced vortex affects the distribution position of the low-pressure zone on the blade, thereby promoting the leading edge cavitation.

半螺旋吸力室内舌形涡及其对空化的影响研究
本文旨在阐明半螺旋吸入腔舌部产生的涡演化特征及其对泵空化的影响。基于紊流粘度校正模型,对比转速为160的离心泵内部流动进行了仿真,实验数据验证了仿真结果。本研究重点分析了大流量、高效率和部分流量的条件。结果表明,舌面会产生舌形涡。舌形涡由舌形区向叶轮区延伸,形状呈弯曲细长型。舌形涡的形状和体积与流量有关。在偏流量下,涡的形状模糊且较小。高效区内有一个完整而明显的弯曲细长涡。在大流量条件下,涡的形状与高效区一致,体积较大。涡的强度与入口的循环正相关,入口在吸力室中。舌形涡影响叶片低压区的分布位置,从而促进前缘空化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
12.00%
发文量
2374
审稿时长
4.6 months
期刊介绍: Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信