Predicting inhibitors of OATP1B1 via heterogeneous OATP-ligand interaction graph neural network (HOLIgraph)

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mehrsa Mardikoraem, Joelle N. Eaves, Theodore Belecciu, Nathaniel Pascual, Alexander Aljets, Bruno Hagenbuch, Erik M. Shapiro, Benjamin J. Orlando, Daniel R. Woldring
{"title":"Predicting inhibitors of OATP1B1 via heterogeneous OATP-ligand interaction graph neural network (HOLIgraph)","authors":"Mehrsa Mardikoraem,&nbsp;Joelle N. Eaves,&nbsp;Theodore Belecciu,&nbsp;Nathaniel Pascual,&nbsp;Alexander Aljets,&nbsp;Bruno Hagenbuch,&nbsp;Erik M. Shapiro,&nbsp;Benjamin J. Orlando,&nbsp;Daniel R. Woldring","doi":"10.1186/s13321-025-01020-5","DOIUrl":null,"url":null,"abstract":"<div><p>Organic anion transporting polypeptides (OATPs) are membrane transporters crucial for drug uptake and distribution in the human body. OATPs can mediate drug-drug interactions (DDIs) in which the interaction of one drug with an OATP impairs the uptake of another drug, resulting in potentially fatal pharmacological effects. Predicting OATP-mediated DDIs is challenging, due to limited information on OATP inhibition mechanisms and inconsistent experimental OATP inhibition data across different studies. This study introduces Heterogeneous OATP-Ligand Interaction Graph Neural Network (HOLIgraph), a novel computational model that integrates molecular modeling with a graph neural network to enhance the prediction of drug-induced OATP inhibition. By combining ligand (i.e., drug) molecular features with protein-ligand interaction data from rigorous docking simulations, HOLIgraph outperforms traditional DDI prediction models which rely solely on ligand molecular features. HOLIgraph achieved a median balanced accuracy of over 90 percent when predicting inhibitors for OATP1B1, significantly outperforming purely ligand-based models. Beyond improving inhibition prediction, the data used to train HOLIgraph can enable the characterization of protein residues involved in inhibitory drug-OATP interactions. We identified certain OATP1B1 residues that preferentially interact with inhibitors, including I46 and K49. We anticipate such interaction information will be valuable to future structural and mechanistic investigations of OATP1B1.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01020-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01020-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic anion transporting polypeptides (OATPs) are membrane transporters crucial for drug uptake and distribution in the human body. OATPs can mediate drug-drug interactions (DDIs) in which the interaction of one drug with an OATP impairs the uptake of another drug, resulting in potentially fatal pharmacological effects. Predicting OATP-mediated DDIs is challenging, due to limited information on OATP inhibition mechanisms and inconsistent experimental OATP inhibition data across different studies. This study introduces Heterogeneous OATP-Ligand Interaction Graph Neural Network (HOLIgraph), a novel computational model that integrates molecular modeling with a graph neural network to enhance the prediction of drug-induced OATP inhibition. By combining ligand (i.e., drug) molecular features with protein-ligand interaction data from rigorous docking simulations, HOLIgraph outperforms traditional DDI prediction models which rely solely on ligand molecular features. HOLIgraph achieved a median balanced accuracy of over 90 percent when predicting inhibitors for OATP1B1, significantly outperforming purely ligand-based models. Beyond improving inhibition prediction, the data used to train HOLIgraph can enable the characterization of protein residues involved in inhibitory drug-OATP interactions. We identified certain OATP1B1 residues that preferentially interact with inhibitors, including I46 and K49. We anticipate such interaction information will be valuable to future structural and mechanistic investigations of OATP1B1.

利用异构otp -配体相互作用图神经网络预测OATP1B1抑制剂(HOLIgraph)
有机阴离子转运多肽(oats)是一种对人体药物摄取和分布至关重要的膜转运蛋白。OATP可以介导药物-药物相互作用(ddi),其中一种药物与OATP的相互作用会损害另一种药物的吸收,导致潜在的致命药理作用。由于OATP抑制机制的信息有限,不同研究中OATP抑制实验数据不一致,预测OATP介导的ddi具有挑战性。本研究引入了异构OATP-配体相互作用图神经网络(HOLIgraph),这是一种将分子建模与图神经网络相结合的新型计算模型,可以增强对药物诱导OATP抑制的预测。HOLIgraph通过将配体(即药物)分子特征与来自严格对接模拟的蛋白质-配体相互作用数据相结合,优于仅依赖配体分子特征的传统DDI预测模型。HOLIgraph在预测OATP1B1抑制剂时的中位平衡精度超过90%,明显优于纯配体模型。除了提高抑制预测,用于训练HOLIgraph的数据还可以表征参与抑制药物- oatp相互作用的蛋白质残基。我们发现某些OATP1B1残基优先与抑制剂相互作用,包括I46和K49。我们预计这些相互作用的信息将对未来OATP1B1的结构和机制研究有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信