On the Lagrangian Embedding of \({\rm U}(n)\) in the Grassmannian \({\rm Gr} (n -1, 2 n -1)\)

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
N. Tyurin
{"title":"On the Lagrangian Embedding of \\({\\rm U}(n)\\) in the Grassmannian \\({\\rm Gr} (n -1, 2 n -1)\\)","authors":"N. Tyurin","doi":"10.1134/S1061920824601770","DOIUrl":null,"url":null,"abstract":"<p> In the present paper we combine our previous results in the studies of Lagrangian geometry of the Grassmannian <span>\\({\\rm Gr} (k, n)\\)</span> with the example of Lagrangian embedding of the full flag variety in the direct product of projective spaces, found by D. Bykov. As the result, we construct a Langrangian immersion of the group <span>\\({\\rm U}(n)\\)</span>, as a submanifold, into the complex Grassmanian <span>\\({\\rm Gr} (n-1, 2 n-1)\\)</span> equipped with the symplectic form, by the Plücker embedding. </p><p> <b> DOI</b> 10.1134/S1061920824601770 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 1","pages":"210 - 218"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824601770","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper we combine our previous results in the studies of Lagrangian geometry of the Grassmannian \({\rm Gr} (k, n)\) with the example of Lagrangian embedding of the full flag variety in the direct product of projective spaces, found by D. Bykov. As the result, we construct a Langrangian immersion of the group \({\rm U}(n)\), as a submanifold, into the complex Grassmanian \({\rm Gr} (n-1, 2 n-1)\) equipped with the symplectic form, by the Plücker embedding.

DOI 10.1134/S1061920824601770

关于\({\rm U}(n)\)在格拉斯曼方程中的拉格朗日嵌入 \({\rm Gr} (n -1, 2 n -1)\)
在本文中,我们将前人关于格拉斯曼方程\({\rm Gr} (k, n)\)的拉格朗日几何的研究结果与D. Bykov在射影空间的直积中发现的全旗变化的拉格朗日嵌入的例子结合起来。因此,我们将群\({\rm U}(n)\)作为子流形,通过plicker嵌入构造为具有辛形式的复数Grassmanian \({\rm Gr} (n-1, 2 n-1)\)的朗朗日浸没。Doi 10.1134/ s1061920824601770
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信