Analysis of One-Dimensional Hexagonal Piezoelectric Quasicrystal with a Periodic Distribution of Slant Mode-III Cracks

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Xue Rang, Yan-Bin Zhou
{"title":"Analysis of One-Dimensional Hexagonal Piezoelectric Quasicrystal with a Periodic Distribution of Slant Mode-III Cracks","authors":"Xue Rang,&nbsp;Yan-Bin Zhou","doi":"10.1007/s10659-025-10132-w","DOIUrl":null,"url":null,"abstract":"<div><p>The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under anti-plane shear and electromechanical loading are analyzed in this paper. Based on the three electrical boundary conditions at the crack surfaces, electrically permeable, electrically semi-permeable and electrically impermeable condition, the problems are classified as solving singular integral equations by using screw dislocation solutions. For two special cases of coplanar and parallel periodic crack arrays, the closed form solutions for the electroelastic fields, including stress fields, electric fields and tearing displacements, have been determined. The solutions of the singular integral equations for slant cracks can be transformed into the solutions of algebraic equations, the field intensity factors and mechanical strain energy release rates have been determined. The numerical solutions show that the normalized mechanical strain energy release rates increase under the influence of phonon field stress, phason field stress as well as electric fields, indicating that cracks are more likely to propagate in piezoelectric quasicrystal materials. In addition, it is found that the stress fields at the crack tips exhibited singularity, and the variation law of the total energy release rates with the applied electrical loading are also obtained.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10132-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under anti-plane shear and electromechanical loading are analyzed in this paper. Based on the three electrical boundary conditions at the crack surfaces, electrically permeable, electrically semi-permeable and electrically impermeable condition, the problems are classified as solving singular integral equations by using screw dislocation solutions. For two special cases of coplanar and parallel periodic crack arrays, the closed form solutions for the electroelastic fields, including stress fields, electric fields and tearing displacements, have been determined. The solutions of the singular integral equations for slant cracks can be transformed into the solutions of algebraic equations, the field intensity factors and mechanical strain energy release rates have been determined. The numerical solutions show that the normalized mechanical strain energy release rates increase under the influence of phonon field stress, phason field stress as well as electric fields, indicating that cracks are more likely to propagate in piezoelectric quasicrystal materials. In addition, it is found that the stress fields at the crack tips exhibited singularity, and the variation law of the total energy release rates with the applied electrical loading are also obtained.

具有倾斜iii型裂纹周期性分布的一维六方压电准晶体的分析
本文分析了具有周期性斜型裂纹分布的一维六边形压电准晶体材料在反平面剪切和机电载荷作用下的电弹性问题。基于裂纹表面的三种电边界条件,即电渗透、电半渗透和电不渗透条件,将问题归为用螺位错解求解奇异积分方程。对于共面和平行周期裂纹阵列两种特殊情况,确定了包括应力场、电场和撕裂位移在内的电弹性场的闭合解。将斜裂纹奇异积分方程的解转化为代数方程的解,确定了其场强因子和力学应变能释放率。数值解表明,声子场应力、相场应力以及电场的作用下,归一化机械应变能释放率增大,表明压电准晶材料中裂纹更容易扩展。此外,还发现裂纹尖端的应力场表现出奇异性,并得到了总能量释放率随外加电载荷的变化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信