{"title":"Geometric Probability on a Lattice with the 15th Type of Convex Pentagon as a Fundamental Region","authors":"Jiangfu Zhao, Jun Jiang, Hai Liu","doi":"10.1007/s10114-025-3268-5","DOIUrl":null,"url":null,"abstract":"<div><p>In 2015, a group of mathematicians at the University of Washington, Bothell, discovered the 15th pentagon that can cover a plane, with no gaps and overlaps. However, research on its containment measure theory or geometric probability is limited. In this study, the Laplace extension of Buffon’s problem is generalized to the case of the 15th pentagon. In the solving process, the explicit expressions for the generalized support function and containment function of this irregular pentagon are derived. In addition, the chord length distribution function and density function of random distance of this pentagon are obtained in terms of the containment function.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 4","pages":"1213 - 1230"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3268-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 2015, a group of mathematicians at the University of Washington, Bothell, discovered the 15th pentagon that can cover a plane, with no gaps and overlaps. However, research on its containment measure theory or geometric probability is limited. In this study, the Laplace extension of Buffon’s problem is generalized to the case of the 15th pentagon. In the solving process, the explicit expressions for the generalized support function and containment function of this irregular pentagon are derived. In addition, the chord length distribution function and density function of random distance of this pentagon are obtained in terms of the containment function.
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.