Optical transformation of riverine colored dissolved organic matter during salt-induced flocculation

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Eero Asmala, Ryan W. Paerl, Christopher L. Osburn
{"title":"Optical transformation of riverine colored dissolved organic matter during salt-induced flocculation","authors":"Eero Asmala,&nbsp;Ryan W. Paerl,&nbsp;Christopher L. Osburn","doi":"10.1007/s10533-025-01237-4","DOIUrl":null,"url":null,"abstract":"<div><p>Flocculation of riverine dissolved organic matter (DOM) in estuaries is crucial for transforming and removing terrestrial carbon inputs across the land-to-ocean aquatic continuum. We measured variations in chromophoric DOM (CDOM) absorption and fluorescence of riverine DOM through mixing experiments conducted across various seasons and environments, identifying patterns in salt-induced flocculation. Our observations show a systematic reduction in CDOM absorption in the 250–450 nm range at salinity 2, with a sharper decrease at higher wavelengths. Flocculation led to decreased relative fluorescence intensity below emission wavelength of 360 nm and an increased intensity at higher emission wavelengths across the excitation spectrum measured (250–450 nm). We introduce a new metric, <i>red shift ratio</i>, a fluorescence-based metric calculated as the ratio of emission intensity at 300–350 nm to that at 360–500 nm, at excitation wavelengths between 250 and 300 nm, for detecting flocculation-induced changes in CDOM across estuarine systems. The observed sensitivity of CDOM to flocculation in low salinities challenges its use as a conservative tracer in coastal gradients, suggesting that recalibrations are required for remote sensing algorithms and carbon flux estimations across land-sea continuum, particularly in systems with similar characteristics.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01237-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01237-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Flocculation of riverine dissolved organic matter (DOM) in estuaries is crucial for transforming and removing terrestrial carbon inputs across the land-to-ocean aquatic continuum. We measured variations in chromophoric DOM (CDOM) absorption and fluorescence of riverine DOM through mixing experiments conducted across various seasons and environments, identifying patterns in salt-induced flocculation. Our observations show a systematic reduction in CDOM absorption in the 250–450 nm range at salinity 2, with a sharper decrease at higher wavelengths. Flocculation led to decreased relative fluorescence intensity below emission wavelength of 360 nm and an increased intensity at higher emission wavelengths across the excitation spectrum measured (250–450 nm). We introduce a new metric, red shift ratio, a fluorescence-based metric calculated as the ratio of emission intensity at 300–350 nm to that at 360–500 nm, at excitation wavelengths between 250 and 300 nm, for detecting flocculation-induced changes in CDOM across estuarine systems. The observed sensitivity of CDOM to flocculation in low salinities challenges its use as a conservative tracer in coastal gradients, suggesting that recalibrations are required for remote sensing algorithms and carbon flux estimations across land-sea continuum, particularly in systems with similar characteristics.

盐诱导絮凝过程中河流有色溶解有机物的光学转化
河流溶解有机物(DOM)在河口的絮凝作用对于转化和清除陆地碳输入在陆地-海洋水生连续体中的作用至关重要。我们通过在不同季节和环境下进行的混合实验,测量了河流DOM的显色性DOM (CDOM)吸收和荧光的变化,确定了盐诱导絮凝的模式。我们的观察表明,在盐度为2的250-450 nm范围内,CDOM的吸收有系统的减少,在更高波长处下降更明显。絮凝导致在360 nm发射波长以下的相对荧光强度降低,在250-450 nm激发光谱中较高发射波长的相对荧光强度增加。我们引入了一种新的度量,红移比,这是一种基于荧光的度量,计算为300 - 350 nm的发射强度与360-500 nm的发射强度之比,激发波长在250 - 300 nm之间,用于检测絮凝诱导的CDOM在河口系统中的变化。观测到的CDOM对低盐度絮凝的敏感性对其作为沿海梯度的保守示踪剂的使用提出了挑战,这表明遥感算法和跨陆海连续体的碳通量估算需要重新校准,特别是在具有类似特征的系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信