Spatial Decay/Asymptotics in the Navier–Stokes Equation

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
P. Topalov
{"title":"Spatial Decay/Asymptotics in the Navier–Stokes Equation","authors":"P. Topalov","doi":"10.1134/S1061920824601812","DOIUrl":null,"url":null,"abstract":"<p> We discuss the occurrence of spatial asymptotic expansions of solutions to the Navier–Stokes equation on <span>\\( {\\mathbb{R}} ^d\\)</span>. In particular, we prove that the Navier–Stokes equation is locally well-posed in a class of weighted Sobolev and asymptotic spaces. The solutions depend analytically on the initial data and time and (generically) develop nontrivial asymptotic terms as <span>\\(|x|\\to\\infty\\)</span>. In addition, the solutions have a spatial smoothing property that depends on the order of the asymptotic expansion. </p><p> <b> DOI</b> 10.1134/S1061920824601812 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 1","pages":"196 - 209"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824601812","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the occurrence of spatial asymptotic expansions of solutions to the Navier–Stokes equation on \( {\mathbb{R}} ^d\). In particular, we prove that the Navier–Stokes equation is locally well-posed in a class of weighted Sobolev and asymptotic spaces. The solutions depend analytically on the initial data and time and (generically) develop nontrivial asymptotic terms as \(|x|\to\infty\). In addition, the solutions have a spatial smoothing property that depends on the order of the asymptotic expansion.

DOI 10.1134/S1061920824601812

Navier-Stokes方程的空间衰减/渐近性
讨论了在\( {\mathbb{R}} ^d\)上Navier-Stokes方程解的空间渐近展开式的出现。特别地,我们证明了Navier-Stokes方程在一类加权Sobolev和渐近空间中是局部适定的。解解析地依赖于初始数据和时间,并且(一般地)发展为非平凡渐近项,如\(|x|\to\infty\)。此外,解具有空间平滑性质,该性质依赖于渐近展开的阶数。Doi 10.1134/ s1061920824601812
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信