The Thom Isomorphism in Gauge-Equivariant \(K\)-Theory of \(C^*\)-Bundles

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
D. Fufaev, E. Troitsky
{"title":"The Thom Isomorphism in Gauge-Equivariant \\(K\\)-Theory of \\(C^*\\)-Bundles","authors":"D. Fufaev,&nbsp;E. Troitsky","doi":"10.1134/S106192082460168X","DOIUrl":null,"url":null,"abstract":"<p> For a bundle of compact Lie groups <span>\\(p\\colon {\\cal G} \\to B\\)</span> over a compactum <span>\\(B\\)</span> (with the structure group of automorphisms of the corresponding group), we introduce the gauge-equivariant <span>\\(K\\)</span>-theory group <span>\\(K_{{\\cal G}}^{0}(X; {\\mathcal A} )\\)</span> of a bundle <span>\\(\\pi_{X}\\colon X \\to B\\)</span> endowed with a continuous action of <span>\\({\\cal G}\\)</span> constructed using bundles <span>\\(E\\to X\\)</span> with the typical fiber being a projective finitely generated module over a unital <span>\\(C^*\\)</span>-algebra <span>\\( {\\mathcal A} \\)</span>. The index of a family of gauge-invariant (= <span>\\({\\cal G}\\)</span>-equivariant) Fredholm operators naturally takes values in these groups. We introduce and study products and use them to define the Thom homomorphism in gauge-equivariant <span>\\(K\\)</span>-theory and prove that this homomorphism is an isomorphism. </p><p> <b> DOI</b> 10.1134/S106192082460168X </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 1","pages":"44 - 64"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192082460168X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For a bundle of compact Lie groups \(p\colon {\cal G} \to B\) over a compactum \(B\) (with the structure group of automorphisms of the corresponding group), we introduce the gauge-equivariant \(K\)-theory group \(K_{{\cal G}}^{0}(X; {\mathcal A} )\) of a bundle \(\pi_{X}\colon X \to B\) endowed with a continuous action of \({\cal G}\) constructed using bundles \(E\to X\) with the typical fiber being a projective finitely generated module over a unital \(C^*\)-algebra \( {\mathcal A} \). The index of a family of gauge-invariant (= \({\cal G}\)-equivariant) Fredholm operators naturally takes values in these groups. We introduce and study products and use them to define the Thom homomorphism in gauge-equivariant \(K\)-theory and prove that this homomorphism is an isomorphism.

DOI 10.1134/S106192082460168X

规范等变\(K\) - \(C^*\) -束理论中的Thom同构
对于一束紧李群 \(p\colon {\cal G} \to B\) 在一个紧凑的 \(B\) (利用相应群的自同构结构群),引入规范等变 \(K\)-理论群 \(K_{{\cal G}}^{0}(X; {\mathcal A} )\) 一捆的 \(\pi_{X}\colon X \to B\) 具有持续行动能力的 \({\cal G}\) 使用捆绑包构造 \(E\to X\) 典型的光纤是一个射影有限生成模块在一个单位 \(C^*\)-代数 \( {\mathcal A} \). 一类规范不变量(= \({\cal G}\)-等变)Fredholm算子自然取这些组中的值。我们引入并研究了积,并用它们来定义标准等变中的Thom同态 \(K\)-理论并证明这个同态是一个同构。Doi 10.1134/ s106192082460168x
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信