{"title":"Hydrodynamic characteristics of typical shear-thinning polymer flow past a cylinder","authors":"Tian-yu Liu, Hai-bao Hu, Jun Wen, Luo Xie","doi":"10.1007/s42241-025-0006-5","DOIUrl":null,"url":null,"abstract":"<div><p>To illustrate the influence of shear-thinning polymer solution on hydrodynamic and flow structure of element assistance and its mechanism of action, this article conducted a numerical investigation for flow past a cylinder in typical shearing-thinning polymer solutions at <i>Re</i> = 60 based on the finite volume method (FVM). One flexible polymer (PEO) and two rigid polymers (XG, DG), whose rheological properties were experimental fitted using the Carreau-Yasuda model by other literature, were chosen to perform the numerical simulation. The vortex size and the back-flow region length both became smaller in polymer flows, and this inhibition effect was most significant in XG flow. On the contrary, except for the 50 ppm PEO flow, the shedding frequency was promoted in polymer flow. Meanwhile, the three polymers exhibited enhancement effects on the lift coefficient fluctuation, and inhibition effects on the drag coefficient; only XG flow significantly promoted the drag coefficient fluctuation. The dynamic model decomposition (DMD) analysis further indicated that the vortex intensity of each mode in polymer flow was stronger than that in water flow. New structures appeared in PEO, DG flows, while only quantitative difference was found in XG flow compared to water flow. The polymers also affected the mode growth rate and thus the flow stability. The rigid polymer only induced the dispersion degree of the growth rates, while flexible polymer may trigger positive values. In summary, the above hydrodynamic characteristics of shear-thinning polymer flow past a cylinder could provide theoretical support for further understanding the flow characteristics of non-Newtonian fluids.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"37 1","pages":"138 - 148"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-025-0006-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To illustrate the influence of shear-thinning polymer solution on hydrodynamic and flow structure of element assistance and its mechanism of action, this article conducted a numerical investigation for flow past a cylinder in typical shearing-thinning polymer solutions at Re = 60 based on the finite volume method (FVM). One flexible polymer (PEO) and two rigid polymers (XG, DG), whose rheological properties were experimental fitted using the Carreau-Yasuda model by other literature, were chosen to perform the numerical simulation. The vortex size and the back-flow region length both became smaller in polymer flows, and this inhibition effect was most significant in XG flow. On the contrary, except for the 50 ppm PEO flow, the shedding frequency was promoted in polymer flow. Meanwhile, the three polymers exhibited enhancement effects on the lift coefficient fluctuation, and inhibition effects on the drag coefficient; only XG flow significantly promoted the drag coefficient fluctuation. The dynamic model decomposition (DMD) analysis further indicated that the vortex intensity of each mode in polymer flow was stronger than that in water flow. New structures appeared in PEO, DG flows, while only quantitative difference was found in XG flow compared to water flow. The polymers also affected the mode growth rate and thus the flow stability. The rigid polymer only induced the dispersion degree of the growth rates, while flexible polymer may trigger positive values. In summary, the above hydrodynamic characteristics of shear-thinning polymer flow past a cylinder could provide theoretical support for further understanding the flow characteristics of non-Newtonian fluids.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.