Understanding surface morphology evolution in magnetron sputtered AlN templates: mitigating tensile stress and enhancing crystal quality†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-04-09 DOI:10.1039/D5CE00027K
Li Jiang, Jianwei Ben, Ke Jiang, Shanli Zhang, Tong Wu, Zikai Nie, Entao Zhang, Shunpeng Lu, Xiaojuan Sun and Dabing Li
{"title":"Understanding surface morphology evolution in magnetron sputtered AlN templates: mitigating tensile stress and enhancing crystal quality†","authors":"Li Jiang, Jianwei Ben, Ke Jiang, Shanli Zhang, Tong Wu, Zikai Nie, Entao Zhang, Shunpeng Lu, Xiaojuan Sun and Dabing Li","doi":"10.1039/D5CE00027K","DOIUrl":null,"url":null,"abstract":"<p >The thickness and surface morphology of aluminum nitride (AlN) templates are crucial for evaluating their quality and suitability for device applications. However, the relationship between these two factors remains unclear for AlN templates grown <em>via</em> magnetron sputtering. This study systematically investigates the surface restructuring mechanisms in AlN films during thickness progression, revealing a stress-driven morphological transition. As film thickness increases, accumulated tensile stress exceeding ∼0.5 GPa triggers the spontaneous formation of “flower-like” surface patterns through stress relief. While mitigating further stress buildup, this morphological transformation degrades crystalline quality post-high-temperature annealing. Through strategic optimization of sputtering thermodynamics, we successfully preset compressive stress in AlN films and extended the critical thickness for morphological degradation to 2 μm. The resulting high-quality thick AlN films exhibit simultaneously improved surface continuity and enhanced crystalline perfection. These results provide valuable insights into the stress-morphology interactions in sputtered AlN films, offering new strategies for optimizing AlN template growth and enhancing the performance of AlN-based devices.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 18","pages":" 2895-2901"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00027k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The thickness and surface morphology of aluminum nitride (AlN) templates are crucial for evaluating their quality and suitability for device applications. However, the relationship between these two factors remains unclear for AlN templates grown via magnetron sputtering. This study systematically investigates the surface restructuring mechanisms in AlN films during thickness progression, revealing a stress-driven morphological transition. As film thickness increases, accumulated tensile stress exceeding ∼0.5 GPa triggers the spontaneous formation of “flower-like” surface patterns through stress relief. While mitigating further stress buildup, this morphological transformation degrades crystalline quality post-high-temperature annealing. Through strategic optimization of sputtering thermodynamics, we successfully preset compressive stress in AlN films and extended the critical thickness for morphological degradation to 2 μm. The resulting high-quality thick AlN films exhibit simultaneously improved surface continuity and enhanced crystalline perfection. These results provide valuable insights into the stress-morphology interactions in sputtered AlN films, offering new strategies for optimizing AlN template growth and enhancing the performance of AlN-based devices.

了解磁控溅射AlN模板的表面形貌演变:减轻拉伸应力和提高晶体质量
氮化铝(AlN)模板的厚度和表面形貌是评估其质量和器件应用适用性的关键。然而,对于磁控溅射生长的AlN模板,这两个因素之间的关系尚不清楚。本研究系统地研究了AlN薄膜在增厚过程中的表面重组机制,揭示了应力驱动的形态转变。随着薄膜厚度的增加,累积的拉伸应力超过~ 0.5 GPa,通过应力释放触发“花状”表面图案的自发形成。在减轻进一步应力积累的同时,这种形态转变降低了高温退火后的晶体质量。通过对溅射热力学的策略优化,我们成功地预设了AlN薄膜的压应力,并将形貌降解的临界厚度扩展到2 μm。所得到的高质量AlN厚膜同时表现出改善的表面连续性和增强的晶体完美性。这些结果为研究溅射AlN薄膜的应力形态相互作用提供了有价值的见解,为优化AlN模板生长和提高AlN基器件的性能提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信