Deep Learning-Based Multisensor Approach for Precision Agricultural Crop Classification Based on Nitrogen Levels

J. Reji;Rama Rao Nidamanuri
{"title":"Deep Learning-Based Multisensor Approach for Precision Agricultural Crop Classification Based on Nitrogen Levels","authors":"J. Reji;Rama Rao Nidamanuri","doi":"10.1109/LGRS.2025.3556122","DOIUrl":null,"url":null,"abstract":"Accurate classification of crops at the patch level based on nutrient status, particularly nitrogen (N) levels, is essential for advancing precision agriculture (PA). While recent advancements in remote sensing, scalable computing, and visualization technologies have enabled high-resolution plant monitoring, the spectral similarity among crops remains a challenge for precise classification using remote sensing data. This study introduces a multisensor fusion approach, integrating terrestrial LiDAR point cloud data and WorldView-III multispectral imagery within a deep learning (DL) framework to classify cabbage, eggplant, and tomato across different N levels. By combining structural and spectral information, this method effectively captures N-induced growth variations, leading to improved crop discrimination. Our results demonstrate that applying a deep convolutional neural network (DCNN) model to the fused dataset enhances classification accuracy by 13%–16% compared to using multispectral data alone. The incorporation of LiDAR data plays a key role in capturing canopy structure, significantly improving classification performance. Additionally, our DL approach outperforms traditional machine-learning methods, including the random forest (RF) classifier, reinforcing the advantages of DL for N-sensitive crop classification. By leveraging multisensor integration and DL, this study presents a robust and scalable approach for enhancing crop classification accuracy, with significant potential for advancing PA and site-specific nutrient management.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10945886/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate classification of crops at the patch level based on nutrient status, particularly nitrogen (N) levels, is essential for advancing precision agriculture (PA). While recent advancements in remote sensing, scalable computing, and visualization technologies have enabled high-resolution plant monitoring, the spectral similarity among crops remains a challenge for precise classification using remote sensing data. This study introduces a multisensor fusion approach, integrating terrestrial LiDAR point cloud data and WorldView-III multispectral imagery within a deep learning (DL) framework to classify cabbage, eggplant, and tomato across different N levels. By combining structural and spectral information, this method effectively captures N-induced growth variations, leading to improved crop discrimination. Our results demonstrate that applying a deep convolutional neural network (DCNN) model to the fused dataset enhances classification accuracy by 13%–16% compared to using multispectral data alone. The incorporation of LiDAR data plays a key role in capturing canopy structure, significantly improving classification performance. Additionally, our DL approach outperforms traditional machine-learning methods, including the random forest (RF) classifier, reinforcing the advantages of DL for N-sensitive crop classification. By leveraging multisensor integration and DL, this study presents a robust and scalable approach for enhancing crop classification accuracy, with significant potential for advancing PA and site-specific nutrient management.
基于深度学习的多传感器氮素水平精准农作物分类方法
基于养分状况,特别是氮(N)水平,在斑块水平上对作物进行准确分类,对于推进精准农业(PA)至关重要。虽然遥感、可扩展计算和可视化技术的最新进展使高分辨率植物监测成为可能,但作物之间的光谱相似性仍然是利用遥感数据进行精确分类的一个挑战。本研究引入了一种多传感器融合方法,在深度学习(DL)框架内整合地面LiDAR点云数据和WorldView-III多光谱图像,对不同N水平的卷心菜、茄子和番茄进行分类。通过结合结构信息和光谱信息,该方法可以有效捕获氮素诱导的生长变化,从而提高作物识别能力。我们的研究结果表明,与单独使用多光谱数据相比,将深度卷积神经网络(DCNN)模型应用于融合数据集可以提高13%-16%的分类精度。激光雷达数据的融合在捕获冠层结构方面发挥了关键作用,显著提高了分类性能。此外,我们的深度学习方法优于传统的机器学习方法,包括随机森林(RF)分类器,增强了深度学习在n敏感作物分类中的优势。通过利用多传感器集成和深度学习,本研究提出了一种强大且可扩展的方法来提高作物分类精度,具有推进PA和特定地点营养管理的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信