{"title":"Structures and mechanisms of AAA+ protein complexes in DNA processing","authors":"Alexander Carver , Bowen Zhang , Xiaodong Zhang","doi":"10.1016/j.sbi.2025.103056","DOIUrl":null,"url":null,"abstract":"<div><div>AAA+ proteins are a large family of ATPases involved in a myriad of cellular activities. Recent advances in AAA+ proteins, especially cryoEM structures of these proteins in complex with their substrates, have provided key insights into how they function. Here we review recent progress in structural studies and mechanistic understanding of AAA+ proteins involved in DNA processing, including gene transcription, DNA replication, repair/recombination and transposition. Using a few selected examples, we show how AAA+ proteins act on both DNA and protein peptides, which are often enclosed in the pores of AAA+ hexamers. We propose that using AAA+ proteins to translocate a peptide to partially unfold a substrate is an effective strategy in disassembling an assembled complex. Further, several studies show that although they often act as asymmetric hexamers in their active form, AAA+ proteins adopt a range of oligomers for their functions.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103056"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000740","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AAA+ proteins are a large family of ATPases involved in a myriad of cellular activities. Recent advances in AAA+ proteins, especially cryoEM structures of these proteins in complex with their substrates, have provided key insights into how they function. Here we review recent progress in structural studies and mechanistic understanding of AAA+ proteins involved in DNA processing, including gene transcription, DNA replication, repair/recombination and transposition. Using a few selected examples, we show how AAA+ proteins act on both DNA and protein peptides, which are often enclosed in the pores of AAA+ hexamers. We propose that using AAA+ proteins to translocate a peptide to partially unfold a substrate is an effective strategy in disassembling an assembled complex. Further, several studies show that although they often act as asymmetric hexamers in their active form, AAA+ proteins adopt a range of oligomers for their functions.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation