{"title":"Leveraging electron distribution reconstruction of spinel MnCo2O4 hollow microflowers for the aerobic oxidation of limonene","authors":"Jiangyong Liu , Chennan Wang , Bing Liu","doi":"10.1016/j.apcata.2025.120331","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of biomass-derived limonene is an emerging field. The heterogeneous oxidation of limonene to high value-added chemicals has been recently considered as a promising way, but still remains a big challenge. Here, we construct a highly active MnCo<sub>2</sub>O<sub>4</sub> catalyst with an intriguing hollow microflower-like morphology assembled by uniform porous sheets (HMMF). When employed in the oxidation of limonene to 1,2-limonene oxide (LO), the HMMF catalyst achieves a LO yield of 64.0 % with the limonene conversion of 82.8 % and selectivity of 77.3 % to LO under mild reaction conditions, far outperforming the monometallic Co<sub>3</sub>O<sub>4</sub> catalyst. The high performance can be attributed to the synergistic benefits of bimetallic spinel structure and the unique morphology. Experimental results and theoretical research unveil that the substitution of Mn into Co<sub>3</sub>O<sub>4</sub> to form the well-defined MnCo<sub>2</sub>O<sub>4</sub> spinel promotes the establishment of highly active asymmetric Mn−O−Co centers. The reconfigured electronic structure contributes to the generation of oxygen vacancy (OV) and redox couples, facilitating the production of active oxygen species and thus boosting the oxidation kinetics. The mesoporous structure with large surface area can enhance the contact of reactive molecules with the active sites and promote the transportation of reactants and products within the channels. This study offers a successful paradigm for the construction of bimetallic spinels with well-integrated assembled morphology for the applications in the selective oxidation of hydrocarbons and beyond.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"701 ","pages":"Article 120331"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X25002327","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of biomass-derived limonene is an emerging field. The heterogeneous oxidation of limonene to high value-added chemicals has been recently considered as a promising way, but still remains a big challenge. Here, we construct a highly active MnCo2O4 catalyst with an intriguing hollow microflower-like morphology assembled by uniform porous sheets (HMMF). When employed in the oxidation of limonene to 1,2-limonene oxide (LO), the HMMF catalyst achieves a LO yield of 64.0 % with the limonene conversion of 82.8 % and selectivity of 77.3 % to LO under mild reaction conditions, far outperforming the monometallic Co3O4 catalyst. The high performance can be attributed to the synergistic benefits of bimetallic spinel structure and the unique morphology. Experimental results and theoretical research unveil that the substitution of Mn into Co3O4 to form the well-defined MnCo2O4 spinel promotes the establishment of highly active asymmetric Mn−O−Co centers. The reconfigured electronic structure contributes to the generation of oxygen vacancy (OV) and redox couples, facilitating the production of active oxygen species and thus boosting the oxidation kinetics. The mesoporous structure with large surface area can enhance the contact of reactive molecules with the active sites and promote the transportation of reactants and products within the channels. This study offers a successful paradigm for the construction of bimetallic spinels with well-integrated assembled morphology for the applications in the selective oxidation of hydrocarbons and beyond.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.