Activation of central cannabinoid type 2 receptors, but not on peripheral immune cells, is required for endocannabinoid-mediated neuroprotection in Parkinson’s disease
Leyre Ayerra , Miguel Angel Abellanas , Clara Vidaurre , Leyre Basurco , Adriana Tavira , Esther Luquin , Pedro Clavero , Elisa Mengual , Maria Collantes , Ivan Peñuelas , Samuel Ruiz de Martin-Esteban , Uwe Grether , Cecilia J. Hillard , Julian Romero , Sandra Hervás-Stubbs , Maria S. Aymerich
{"title":"Activation of central cannabinoid type 2 receptors, but not on peripheral immune cells, is required for endocannabinoid-mediated neuroprotection in Parkinson’s disease","authors":"Leyre Ayerra , Miguel Angel Abellanas , Clara Vidaurre , Leyre Basurco , Adriana Tavira , Esther Luquin , Pedro Clavero , Elisa Mengual , Maria Collantes , Ivan Peñuelas , Samuel Ruiz de Martin-Esteban , Uwe Grether , Cecilia J. Hillard , Julian Romero , Sandra Hervás-Stubbs , Maria S. Aymerich","doi":"10.1016/j.bbi.2025.04.037","DOIUrl":null,"url":null,"abstract":"<div><div>Neuroinflammation is a key feature of Parkinson’s disease (PD). The cannabinoid receptor type 2 (CB2R) is expressed by cells of the innate and adaptive immune systems. Inhibition of monoacylglycerol lipase (MAGL) with JZL184 increases the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG), which is neuroprotective for dopaminergic neurons. The aim of this study was to determine whether the neuroprotective effect of MAGL inhibition is mediated by CB2R activation on specific immune cell populations. Experimental parkinsonism was induced by chronic administration of MPTP and probenecid. A specific increase in CD4<sup>+</sup> T cell infiltration was detected in the midbrain of parkinsonian mice and was reduced by administration of JZL184. JZL184 had no effect in CB2R KO mice, suggesting that CB2R is required for neuroprotection. In the brain, CB2R expression was restricted to myeloid cells and lymphocytes, and increased in microglia under parkinsonian conditions. Administration of a central CB2R agonist, JWH133, exerted a beneficial effect similar to that of JZL184, whereas the peripheral agonist RO304 lacked neuroprotective activity. These results were confirmed using chimeric mice. <em>In silico</em> analysis, showed that transcripts related to 2-AG biosynthesis are downregulated in the midbrain microglia from PD patients. Our results show that activation of CB2R in the brain prevents nigrostriatal degeneration, CD4<sup>+</sup> T cell infiltration and TNFα production in the midbrain of parkinsonian mice. The reduced 2-AG signaling in microglia from PD patients suggests that activation of microglial CB2R may be an interesting strategy for the treatment of PD.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"128 ","pages":"Pages 600-611"},"PeriodicalIF":8.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125001746","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroinflammation is a key feature of Parkinson’s disease (PD). The cannabinoid receptor type 2 (CB2R) is expressed by cells of the innate and adaptive immune systems. Inhibition of monoacylglycerol lipase (MAGL) with JZL184 increases the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG), which is neuroprotective for dopaminergic neurons. The aim of this study was to determine whether the neuroprotective effect of MAGL inhibition is mediated by CB2R activation on specific immune cell populations. Experimental parkinsonism was induced by chronic administration of MPTP and probenecid. A specific increase in CD4+ T cell infiltration was detected in the midbrain of parkinsonian mice and was reduced by administration of JZL184. JZL184 had no effect in CB2R KO mice, suggesting that CB2R is required for neuroprotection. In the brain, CB2R expression was restricted to myeloid cells and lymphocytes, and increased in microglia under parkinsonian conditions. Administration of a central CB2R agonist, JWH133, exerted a beneficial effect similar to that of JZL184, whereas the peripheral agonist RO304 lacked neuroprotective activity. These results were confirmed using chimeric mice. In silico analysis, showed that transcripts related to 2-AG biosynthesis are downregulated in the midbrain microglia from PD patients. Our results show that activation of CB2R in the brain prevents nigrostriatal degeneration, CD4+ T cell infiltration and TNFα production in the midbrain of parkinsonian mice. The reduced 2-AG signaling in microglia from PD patients suggests that activation of microglial CB2R may be an interesting strategy for the treatment of PD.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.