{"title":"Lp maximal bounds and Sobolev regularity of two-parameter averages over tori","authors":"Juyoung Lee , Sanghyuk Lee","doi":"10.1016/j.aim.2025.110312","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> boundedness of the maximal function defined by the averaging operator <span><math><mi>f</mi><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>f</mi></math></span> over the two-parameter family of tori<span><span><span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>:</mo><mo>=</mo><mo>{</mo><mo>(</mo><mo>(</mo><mi>t</mi><mo>+</mo><mi>s</mi><mi>cos</mi><mo></mo><mi>θ</mi><mo>)</mo><mi>cos</mi><mo></mo><mi>ϕ</mi><mo>,</mo><mspace></mspace><mo>(</mo><mi>t</mi><mo>+</mo><mi>s</mi><mi>cos</mi><mo></mo><mi>θ</mi><mo>)</mo><mi>sin</mi><mo></mo><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>s</mi><mi>sin</mi><mo></mo><mi>θ</mi><mo>)</mo><mo>:</mo><mi>θ</mi><mo>,</mo><mi>ϕ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo>)</mo><mo>}</mo></math></span></span></span> with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>></mo><mi>s</mi><mo>></mo><mn>0</mn></math></span> for some <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. We prove that the associated (two-parameter) maximal function is bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> if and only if <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span>. Also, we obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>–<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> bounds for the local maximal operator on a sharp range of <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span>. Furthermore, sharp smoothing estimates are obtained including the local smoothing estimates for the operators <span><math><mi>f</mi><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>f</mi></math></span> and <span><math><mi>f</mi><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi></mrow></msubsup><mi>f</mi></math></span>. For these purposes, we make use of Bourgain–Demeter's decoupling inequality and Guth–Wang–Zhang's local smoothing estimate for the 2-dimensional wave operator.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"474 ","pages":"Article 110312"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002105","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate boundedness of the maximal function defined by the averaging operator over the two-parameter family of tori with for some . We prove that the associated (two-parameter) maximal function is bounded on if and only if . Also, we obtain – bounds for the local maximal operator on a sharp range of . Furthermore, sharp smoothing estimates are obtained including the local smoothing estimates for the operators and . For these purposes, we make use of Bourgain–Demeter's decoupling inequality and Guth–Wang–Zhang's local smoothing estimate for the 2-dimensional wave operator.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.