Lp maximal bounds and Sobolev regularity of two-parameter averages over tori

IF 1.5 1区 数学 Q1 MATHEMATICS
Juyoung Lee , Sanghyuk Lee
{"title":"Lp maximal bounds and Sobolev regularity of two-parameter averages over tori","authors":"Juyoung Lee ,&nbsp;Sanghyuk Lee","doi":"10.1016/j.aim.2025.110312","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> boundedness of the maximal function defined by the averaging operator <span><math><mi>f</mi><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>f</mi></math></span> over the two-parameter family of tori<span><span><span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>:</mo><mo>=</mo><mo>{</mo><mo>(</mo><mo>(</mo><mi>t</mi><mo>+</mo><mi>s</mi><mi>cos</mi><mo>⁡</mo><mi>θ</mi><mo>)</mo><mi>cos</mi><mo>⁡</mo><mi>ϕ</mi><mo>,</mo><mspace></mspace><mo>(</mo><mi>t</mi><mo>+</mo><mi>s</mi><mi>cos</mi><mo>⁡</mo><mi>θ</mi><mo>)</mo><mi>sin</mi><mo>⁡</mo><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>s</mi><mi>sin</mi><mo>⁡</mo><mi>θ</mi><mo>)</mo><mo>:</mo><mi>θ</mi><mo>,</mo><mi>ϕ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo>)</mo><mo>}</mo></math></span></span></span> with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>&gt;</mo><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span> for some <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. We prove that the associated (two-parameter) maximal function is bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> if and only if <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>. Also, we obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>–<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> bounds for the local maximal operator on a sharp range of <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span>. Furthermore, sharp smoothing estimates are obtained including the local smoothing estimates for the operators <span><math><mi>f</mi><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>f</mi></math></span> and <span><math><mi>f</mi><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi></mrow></msubsup><mi>f</mi></math></span>. For these purposes, we make use of Bourgain–Demeter's decoupling inequality and Guth–Wang–Zhang's local smoothing estimate for the 2-dimensional wave operator.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"474 ","pages":"Article 110312"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002105","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate Lp boundedness of the maximal function defined by the averaging operator fAtsf over the two-parameter family of toriTts:={((t+scosθ)cosϕ,(t+scosθ)sinϕ,ssinθ):θ,ϕ[0,2π)} with c0t>s>0 for some c0(0,1). We prove that the associated (two-parameter) maximal function is bounded on Lp if and only if p>2. Also, we obtain LpLq bounds for the local maximal operator on a sharp range of p,q. Furthermore, sharp smoothing estimates are obtained including the local smoothing estimates for the operators fAtsf and fAtc0tf. For these purposes, we make use of Bourgain–Demeter's decoupling inequality and Guth–Wang–Zhang's local smoothing estimate for the 2-dimensional wave operator.
环面上双参数平均的Lp极大界和Sobolev正则性
我们研究了在双参数toriTts族上由平均算子f∈Atsf定义的极大函数的Lp有界性:={((t+scos θ)cos (φ),(t+scos θ)sin (φ,ssin θ):θ, φ∈[0,2π)},对于某些c0∈(0,1),c0t>s>0。证明了相关的(双参数)极大函数在Lp上有界当且仅当p>;2。同时,我们得到了局部极大算子在p,q的范围内的Lp-Lq界。在此基础上,得到了包含算子f∈Atsf和f∈Atc0tf的局部光滑估计。为此,我们利用Bourgain-Demeter的解耦不等式和Guth-Wang-Zhang的二维波算子局部平滑估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信