Probing the thermodynamic properties of polyol deep eutectic solvents: Based on electrostatic potential polarization and inverse gas chromatography

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Dingkai Hu, Qiang Wang, Xinyue Wang, Wenna Wang, Yali Chen, Muhammad Furqan
{"title":"Probing the thermodynamic properties of polyol deep eutectic solvents: Based on electrostatic potential polarization and inverse gas chromatography","authors":"Dingkai Hu,&nbsp;Qiang Wang,&nbsp;Xinyue Wang,&nbsp;Wenna Wang,&nbsp;Yali Chen,&nbsp;Muhammad Furqan","doi":"10.1016/j.molliq.2025.127705","DOIUrl":null,"url":null,"abstract":"<div><div>This study innovatively combines molecular electrostatic potential (ESP) analysis with inverse gas chromatography (IGC) to systematically probe the thermodynamic behavior of polyol deep eutectic solvents (DESs), offering a dual-methodology framework for green solvent design in complex industrial separations. By integrating quantum chemical polarity mapping of three DESs with temperature-dependent interaction measurements across 41 solute probes, we establish a critical correlation between functional group polarity and hydrogen-bonding capacity. The ESP analysis uniquely reveals that the interaction strength order follows: alcohols &gt; ketones &gt; ethers &gt; esters &gt; halocarbons &gt; aromatics &gt; alkanes, directly linking molecular polarization effects to separation selectivity. Through precise IGC determination of infinite dilution activity coefficients (303.15–343.15 K), we demonstrate thermally responsive solvent–solute interactions, where 85 % of tested systems exhibit decreasing affinity with rising temperature. Notably, the DESs achieve superior selectivity and capacity in benzene-methanol separation compared to conventional ionic liquids and existing DES benchmarks, validating their potential as sustainable alternatives. This work provides a novel paradigm for rational DES screening through coupled computational-experimental analysis, advancing the mechanistic understanding of hydrogen-bond-driven separations.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"431 ","pages":"Article 127705"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225008815","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study innovatively combines molecular electrostatic potential (ESP) analysis with inverse gas chromatography (IGC) to systematically probe the thermodynamic behavior of polyol deep eutectic solvents (DESs), offering a dual-methodology framework for green solvent design in complex industrial separations. By integrating quantum chemical polarity mapping of three DESs with temperature-dependent interaction measurements across 41 solute probes, we establish a critical correlation between functional group polarity and hydrogen-bonding capacity. The ESP analysis uniquely reveals that the interaction strength order follows: alcohols > ketones > ethers > esters > halocarbons > aromatics > alkanes, directly linking molecular polarization effects to separation selectivity. Through precise IGC determination of infinite dilution activity coefficients (303.15–343.15 K), we demonstrate thermally responsive solvent–solute interactions, where 85 % of tested systems exhibit decreasing affinity with rising temperature. Notably, the DESs achieve superior selectivity and capacity in benzene-methanol separation compared to conventional ionic liquids and existing DES benchmarks, validating their potential as sustainable alternatives. This work provides a novel paradigm for rational DES screening through coupled computational-experimental analysis, advancing the mechanistic understanding of hydrogen-bond-driven separations.

Abstract Image

探讨多元醇深共晶溶剂的热力学性质:基于静电电位极化和反相色谱法
本研究创新性地将分子静电势(ESP)分析与反相色谱(IGC)相结合,系统地探究多元醇深共晶溶剂(DESs)的热力学行为,为复杂工业分离中的绿色溶剂设计提供了双方法学框架。通过将3种DESs的量子化学极性映射与41个溶质探针的温度相关相互作用测量相结合,我们建立了官能团极性与氢键容量之间的关键相关性。ESP分析独特地揭示了相互作用强度顺序为:醇类;酮比;醚在酯比;卤烃比;芳烃比;烷烃,直接将分子极化效应与分离选择性联系起来。通过精确的IGC测定无限稀释活度系数(303.15-343.15 K),我们证明了热响应的溶剂-溶质相互作用,其中85%的测试体系表现出随温度升高而降低的亲和力。值得注意的是,与传统离子液体和现有的DES基准相比,DESs在苯-甲醇分离方面具有更高的选择性和容量,验证了它们作为可持续替代品的潜力。这项工作通过耦合计算-实验分析为合理筛选DES提供了一个新的范例,促进了对氢键驱动分离的机理理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信