A 30-yr high-resolution weather research and forecasting model downscaling data over California and Nevada

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Charles Jones , Donald D. Lucas , Allison Bagley , Callum Thompson
{"title":"A 30-yr high-resolution weather research and forecasting model downscaling data over California and Nevada","authors":"Charles Jones ,&nbsp;Donald D. Lucas ,&nbsp;Allison Bagley ,&nbsp;Callum Thompson","doi":"10.1016/j.dib.2025.111562","DOIUrl":null,"url":null,"abstract":"<div><div>This dataset presents a 30-year high resolution meteorological dataset obtained using the WRF model (Advanced version Research WRF version 4.4). We used WRF and European Centre for Medium-Range Weather Forecasts Reanalysis v5 as initial and boundary conditions to generate gridded meteorological variables. A large number of surface weather stations was used for model validation. A multi-physics analysis was first developed to identify a good physics suite extended from 6 November 00 UTC to 10 November 23 UTC, 2018, which included the Camp Fire in northern California. Based on the best physics suite, the downscaling dataset extends from 1 December to 28 February, 1990–2021 and the horizontal domain has 1.5 km grid spacing covering the entire states of California and Nevada in the United States. Comparisons between hourly surface observations and WRF simulations of air temperature, relative humidity and wind speeds show mean absolute errors on the order of (1.6-2.0 C), (10 %) and 1.2–1.5 m s<sup>-1</sup>, respectively.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"60 ","pages":"Article 111562"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235234092500294X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This dataset presents a 30-year high resolution meteorological dataset obtained using the WRF model (Advanced version Research WRF version 4.4). We used WRF and European Centre for Medium-Range Weather Forecasts Reanalysis v5 as initial and boundary conditions to generate gridded meteorological variables. A large number of surface weather stations was used for model validation. A multi-physics analysis was first developed to identify a good physics suite extended from 6 November 00 UTC to 10 November 23 UTC, 2018, which included the Camp Fire in northern California. Based on the best physics suite, the downscaling dataset extends from 1 December to 28 February, 1990–2021 and the horizontal domain has 1.5 km grid spacing covering the entire states of California and Nevada in the United States. Comparisons between hourly surface observations and WRF simulations of air temperature, relative humidity and wind speeds show mean absolute errors on the order of (1.6-2.0 C), (10 %) and 1.2–1.5 m s-1, respectively.
加利福尼亚和内华达30年高分辨率天气研究和预报模式的缩尺数据
本数据集是使用WRF模式(Advanced version Research WRF version 4.4)获得的30年高分辨率气象数据集。我们使用WRF和欧洲中期天气预报再分析中心v5作为初始和边界条件来生成网格化气象变量。大量地面气象站被用于模型验证。首先开发了一项多物理场分析,以确定从2018年11月6日UTC至11月23日UTC的良好物理套件,其中包括加州北部的Camp Fire。基于最好的物理套件,降尺度数据集从1990-2021年12月1日扩展到2月28日,水平域的网格间距为1.5 km,覆盖了美国加利福尼亚州和内华达州的整个州。每小时地面观测值与WRF模拟的气温、相对湿度和风速的比较显示,平均绝对误差分别为1.6-2.0℃、10%和1.2-1.5 m s-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信