Jin Guofeng, Huang Zhiyong, Huang Yuanzheng, Gao Minna, Wang Yingying
{"title":"Kinetic simulation of the reaction between N,N-dimethylazidoethylamine (DMAZ) and dinitrogen tetroxide (NTO) based on density functional theory","authors":"Jin Guofeng, Huang Zhiyong, Huang Yuanzheng, Gao Minna, Wang Yingying","doi":"10.1007/s11224-024-02401-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the application of N,N-dimethylazidoethylamine (DMAZ) as an alternative fuel to the traditional hydrazine fuel. Shortening ignition delay time is the key factor for the DMAZ application. In order to explore the ignition mechanism of DMAZ and NTO, the reaction mechanism between DMAZ and NO<sub>2</sub>/NTO was studied based on density functional theory (DFT). The results showed that under the conditions of the gas phase and NTO liquid phase, the main path of the reaction is that NO<sub>2</sub> attacks the secondary hydrogen atom of DMAZ. The gas-phase reaction enthalpy is higher than that in the NTO liquid phase, indicating that the gas-phase reaction absorbs more energy and is not easy to proceed, while the NTO liquid-phase reaction is easier. The combustion mechanism of DMAZ and NTO was preliminarily obtained. It is speculated that under actual working conditions, DMAZ and NTO mainly undergo the liquid-phase reaction.</p></div>","PeriodicalId":780,"journal":{"name":"Structural Chemistry","volume":"36 3","pages":"807 - 815"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11224-024-02401-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the application of N,N-dimethylazidoethylamine (DMAZ) as an alternative fuel to the traditional hydrazine fuel. Shortening ignition delay time is the key factor for the DMAZ application. In order to explore the ignition mechanism of DMAZ and NTO, the reaction mechanism between DMAZ and NO2/NTO was studied based on density functional theory (DFT). The results showed that under the conditions of the gas phase and NTO liquid phase, the main path of the reaction is that NO2 attacks the secondary hydrogen atom of DMAZ. The gas-phase reaction enthalpy is higher than that in the NTO liquid phase, indicating that the gas-phase reaction absorbs more energy and is not easy to proceed, while the NTO liquid-phase reaction is easier. The combustion mechanism of DMAZ and NTO was preliminarily obtained. It is speculated that under actual working conditions, DMAZ and NTO mainly undergo the liquid-phase reaction.
期刊介绍:
Structural Chemistry is an international forum for the publication of peer-reviewed original research papers that cover the condensed and gaseous states of matter and involve numerous techniques for the determination of structure and energetics, their results, and the conclusions derived from these studies. The journal overcomes the unnatural separation in the current literature among the areas of structure determination, energetics, and applications, as well as builds a bridge to other chemical disciplines. Ist comprehensive coverage encompasses broad discussion of results, observation of relationships among various properties, and the description and application of structure and energy information in all domains of chemistry.
We welcome the broadest range of accounts of research in structural chemistry involving the discussion of methodologies and structures,experimental, theoretical, and computational, and their combinations. We encourage discussions of structural information collected for their chemicaland biological significance.