Deep learning-based dual monitoring system for power forecasting and fault detection in nuclear power applications

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mingzhe Lyu , Helin Gong , Zhang Chen , Jiangyu Wang , Mingxiao Zhong , Zhiyong Wang , Qing Li , Zefei Pan
{"title":"Deep learning-based dual monitoring system for power forecasting and fault detection in nuclear power applications","authors":"Mingzhe Lyu ,&nbsp;Helin Gong ,&nbsp;Zhang Chen ,&nbsp;Jiangyu Wang ,&nbsp;Mingxiao Zhong ,&nbsp;Zhiyong Wang ,&nbsp;Qing Li ,&nbsp;Zefei Pan","doi":"10.1016/j.egyai.2025.100515","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring key parameters in nuclear power plant control rooms is critical, as human errors can result in severe safety and operational consequences. This study proposes a hybrid framework for power prediction and fault detection that integrates multi-head self-attention mechanisms with long short-term memory networks, combined with a dual-monitoring system. The framework is evaluated using real-time data from two pressurized water reactor units (Units 5 and 6) under four realistic operational scenarios. In the most informative case, the model achieves a 56.6% reduction in root mean square error and a 36.8% reduction in mean absolute error, with a coefficient of determination (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) of 0.9924—significantly outperforming the next-best benchmark. For fault diagnosis, the dual-monitoring system reduces the false negative rate to 18.73% and improves recall to 81.27%, demonstrating strong anomaly detection under complex conditions. By combining short-term fluctuation sensitivity with long-term trend stability, the proposed approach offers a robust and generalizable solution for intelligent monitoring. These findings advance the development of artificial intelligence–enhanced systems for secure and efficient operation of critical energy infrastructure.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100515"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring key parameters in nuclear power plant control rooms is critical, as human errors can result in severe safety and operational consequences. This study proposes a hybrid framework for power prediction and fault detection that integrates multi-head self-attention mechanisms with long short-term memory networks, combined with a dual-monitoring system. The framework is evaluated using real-time data from two pressurized water reactor units (Units 5 and 6) under four realistic operational scenarios. In the most informative case, the model achieves a 56.6% reduction in root mean square error and a 36.8% reduction in mean absolute error, with a coefficient of determination (R2) of 0.9924—significantly outperforming the next-best benchmark. For fault diagnosis, the dual-monitoring system reduces the false negative rate to 18.73% and improves recall to 81.27%, demonstrating strong anomaly detection under complex conditions. By combining short-term fluctuation sensitivity with long-term trend stability, the proposed approach offers a robust and generalizable solution for intelligent monitoring. These findings advance the development of artificial intelligence–enhanced systems for secure and efficient operation of critical energy infrastructure.

Abstract Image

基于深度学习的核电功率预测与故障检测双监测系统
监测核电站控制室的关键参数至关重要,因为人为错误可能导致严重的安全和运行后果。本研究提出了一个电力预测和故障检测的混合框架,该框架将多头自注意机制与长短期记忆网络相结合,并结合双重监测系统。该框架使用来自两个压水反应堆机组(5号机组和6号机组)在四种实际运行情景下的实时数据进行评估。在信息量最大的情况下,该模型的均方根误差降低了56.6%,平均绝对误差降低了36.8%,决定系数(R2)为0.9924,显著优于次优基准。在故障诊断方面,双监测系统将假阴性率降低到18.73%,召回率提高到81.27%,在复杂条件下表现出较强的异常检测能力。该方法将短期波动敏感性与长期趋势稳定性相结合,为智能监测提供了鲁棒性和通用性强的解决方案。这些发现推动了人工智能增强系统的发展,以确保关键能源基础设施的安全和高效运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信