On the rectilinear crossing number of complete balanced multipartite graphs and balanced layered graphs

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Ruy Fabila-Monroy , Rosna Paul , Jenifer Viafara-Chanchi , Alexandra Weinberger
{"title":"On the rectilinear crossing number of complete balanced multipartite graphs and balanced layered graphs","authors":"Ruy Fabila-Monroy ,&nbsp;Rosna Paul ,&nbsp;Jenifer Viafara-Chanchi ,&nbsp;Alexandra Weinberger","doi":"10.1016/j.comgeo.2025.102199","DOIUrl":null,"url":null,"abstract":"<div><div>A rectilinear drawing of a graph is a drawing of the graph in the plane in which the edges are drawn as straight-line segments and its vertices are points in general position. The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross over all rectilinear drawings of the graph. Let <span><math><mi>n</mi><mo>≥</mo><mi>r</mi></math></span> be positive integers. The graph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>, is the complete balanced <em>r</em>-partite graph on <em>n</em> vertices, in which every set of the partition has at least <span><math><mo>⌊</mo><mi>n</mi><mo>/</mo><mi>r</mi><mo>⌋</mo></math></span> vertices. The balanced layered graph, <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>, is an <em>r</em>-partite graph on <em>n</em> vertices, where <em>n</em> is multiple of <em>r</em>. Every partition of <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> contains <span><math><mi>n</mi><mo>/</mo><mi>r</mi></math></span> vertices; for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>−</mo><mn>1</mn></math></span>, all the vertices in the <em>i</em>-th partition are adjacent to all the vertices in the <span><math><mo>(</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-th partition, and these are the only edges of <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. In this paper, we give upper bounds on the rectilinear crossing numbers of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"130 ","pages":"Article 102199"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000379","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A rectilinear drawing of a graph is a drawing of the graph in the plane in which the edges are drawn as straight-line segments and its vertices are points in general position. The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross over all rectilinear drawings of the graph. Let nr be positive integers. The graph Knr, is the complete balanced r-partite graph on n vertices, in which every set of the partition has at least n/r vertices. The balanced layered graph, Lnr, is an r-partite graph on n vertices, where n is multiple of r. Every partition of Lnr contains n/r vertices; for every 1ir1, all the vertices in the i-th partition are adjacent to all the vertices in the (i+1)-th partition, and these are the only edges of Lnr. In this paper, we give upper bounds on the rectilinear crossing numbers of Knr and Lnr.
完全平衡多部图与平衡层图的直线交叉数
图形的直线绘制是在平面上绘制图形,其中的边绘制为直线段,其顶点是一般位置上的点。图的直线相交数是在图的所有直线图上相交的最小边对数。设n≥r为正整数。图Knr是n个顶点上的完全平衡r部图,其中每一个分区集至少有⌊n/r⌋顶点。平衡层图Lnr是一个有n个顶点的r部图,其中n是r的倍数,Lnr的每一个划分包含n/r个顶点;对于每一个1≤i≤r−1,第i个分区中的所有顶点与(i+1)-第i个分区中的所有顶点相邻,并且这些是Lnr的唯一边。本文给出了Knr和Lnr的直线相交数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信