Statistical algorithms for the analysis of deleterious genetic mutations

IF 2 4区 生物学 Q2 BIOLOGY
Laurent Serlet, Andrzej Stos, Fabrice Kwiatkowski
{"title":"Statistical algorithms for the analysis of deleterious genetic mutations","authors":"Laurent Serlet,&nbsp;Andrzej Stos,&nbsp;Fabrice Kwiatkowski","doi":"10.1016/j.biosystems.2025.105463","DOIUrl":null,"url":null,"abstract":"<div><div>We present algorithms for model selection and parameter estimation concerning deleterious genetic mutations. Three models are considered: single gene mutation, double cross-effect mutations or no genetic cause. Each of these models include unknown parameters that must be estimated simultaneously. Available data are phenotypes along family pedigrees but no genotypic data. We compare classical fit methods based on statistical summaries of the data and a neural network approach. We show the performance of our algorithms on simulated datasets of reasonable size. We also consider real data concerning breast/ovarian cancer.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"252 ","pages":"Article 105463"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725000735","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present algorithms for model selection and parameter estimation concerning deleterious genetic mutations. Three models are considered: single gene mutation, double cross-effect mutations or no genetic cause. Each of these models include unknown parameters that must be estimated simultaneously. Available data are phenotypes along family pedigrees but no genotypic data. We compare classical fit methods based on statistical summaries of the data and a neural network approach. We show the performance of our algorithms on simulated datasets of reasonable size. We also consider real data concerning breast/ovarian cancer.
用于分析有害基因突变的统计算法
我们提出了关于有害基因突变的模型选择和参数估计算法。考虑了三种模型:单基因突变、双交叉效应突变或无遗传原因。这些模型中的每一个都包含未知参数,必须同时进行估计。现有的数据是沿家族谱系的表型,但没有基因型数据。我们比较了基于数据统计总结的经典拟合方法和神经网络方法。我们在合理大小的模拟数据集上展示了我们的算法的性能。我们还考虑了有关乳腺癌/卵巢癌的真实数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信