Words of War: A hybrid BERT-CNN approach for topic-wise sentiment analysis on The Russia-Ukraine War

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Md. Saiful Islam, Mahmuda Ferdusi, Tanjim Taharat Aurpa
{"title":"Words of War: A hybrid BERT-CNN approach for topic-wise sentiment analysis on The Russia-Ukraine War","authors":"Md. Saiful Islam,&nbsp;Mahmuda Ferdusi,&nbsp;Tanjim Taharat Aurpa","doi":"10.1016/j.eswa.2025.127759","DOIUrl":null,"url":null,"abstract":"<div><div>The Russia-Ukraine War has dramatically impacted the world, affecting economies, lives, and politics. The war is a common topic on social media, especially on platforms like YouTube. In this study, we analyzed YouTube comments from videos posted by popular news channels like CNN, BBC, etc., to understand people’s opinions about the war. We used a tool called VADER for sentiment analysis and an unsupervised BERT model to identify ten key topics related to the war, including humanitarian issues, economic challenges, political debates, and societal concerns. We then created a model that combines BERT’s ability to understand context with CNN’s feature extraction strengths. Unlike existing approaches, our model incorporates an extra input layer that considers the topic as a significant feature. This hybrid model effectively classifies sentiments with 92.26% accuracy. Our research provides insights into public perceptions and discussions about the Russia-Ukraine War, highlighting essential themes in the conversation.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"284 ","pages":"Article 127759"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425013818","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Russia-Ukraine War has dramatically impacted the world, affecting economies, lives, and politics. The war is a common topic on social media, especially on platforms like YouTube. In this study, we analyzed YouTube comments from videos posted by popular news channels like CNN, BBC, etc., to understand people’s opinions about the war. We used a tool called VADER for sentiment analysis and an unsupervised BERT model to identify ten key topics related to the war, including humanitarian issues, economic challenges, political debates, and societal concerns. We then created a model that combines BERT’s ability to understand context with CNN’s feature extraction strengths. Unlike existing approaches, our model incorporates an extra input layer that considers the topic as a significant feature. This hybrid model effectively classifies sentiments with 92.26% accuracy. Our research provides insights into public perceptions and discussions about the Russia-Ukraine War, highlighting essential themes in the conversation.
战争之言:一种混合BERT-CNN方法,用于对俄罗斯-乌克兰战争的主题明智的情绪分析
俄乌战争极大地影响了世界,影响了经济、生活和政治。这场战争是社交媒体上的一个常见话题,尤其是在YouTube这样的平台上。在这项研究中,我们从CNN, BBC等热门新闻频道发布的视频中分析YouTube评论,以了解人们对战争的看法。我们使用名为VADER的工具进行情绪分析,并使用无监督BERT模型来确定与战争相关的十个关键主题,包括人道主义问题、经济挑战、政治辩论和社会问题。然后,我们创建了一个模型,该模型结合了BERT理解上下文的能力和CNN的特征提取优势。与现有的方法不同,我们的模型包含了一个额外的输入层,它将主题视为一个重要的特征。该混合模型对情感的分类准确率为92.26%。我们的研究提供了公众对俄乌战争的看法和讨论的见解,突出了对话中的基本主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信