Youjun Li , Junwen Jiang , Yi Zhuo , Jiameng Li , You Li , Ying Xia , Zhengtao Yu
{"title":"IGF2BP1 exacerbates neuroinflammation and cerebral ischemia/reperfusion injury by regulating neuronal ferroptosis and microglial polarization","authors":"Youjun Li , Junwen Jiang , Yi Zhuo , Jiameng Li , You Li , Ying Xia , Zhengtao Yu","doi":"10.1016/j.bbadis.2025.167877","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cerebral ischemia/reperfusion (I/R) injury induces neuronal ferroptosis and microglial phenotypic shifts, driving post-ischemic neurological deficits. This study examines the regulatory role of the N6-methyladenosine (m6A) reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in coordinating these pathological processes through Keap1/Nrf2 signaling.</div></div><div><h3>Methods</h3><div>Cerebral I/R injury was modeled in C57BL/6 mice via middle cerebral artery occlusion (MCAO) and in hippocampal neurons and microglia through oxygen-glucose deprivation/reperfusion (OGD/R). Pro-inflammatory microglial polarization was induced by LPS/IFN-γ stimulation. IGF2BP1's functional impacts were assessed through knockdown and overexpression approaches, with mechanistic evaluations focusing on ferroptosis biomarkers, microglial polarization states, and Keap1/Nrf2 pathway activity. A microglia-neuron co-culture system elucidated cellular crosstalk mechanisms.</div></div><div><h3>Results</h3><div>MCAO-operated mice demonstrated upregulated IGF2BP1 expression accompanied by neuronal apoptosis and microglial M1 polarization. IGF2BP1 silencing significantly attenuated OGD/R-induced neuronal ferroptosis, evidenced by reduced iron overload (Fe<sup>2+</sup>), lipid peroxidation (MDA), and reactive oxygen species (ROS) alongside restored glutathione (GSH) levels, while concurrently enhancing GPX4 activity through Keap1/Nrf2 pathway regulation. This intervention further shifted microglial polarization toward the M2 phenotype, effectively mitigating neuroinflammatory responses. Importantly, the neuroprotective effects of IGF2BP1 knockdown were abolished upon Keap1 overexpression. Co-culture experiments revealed that IGF2BP1-depleted microglia suppressed neuronal ferroptosis via phenotypic reprogramming. In vivo validation confirmed that IGF2BP1 knockdown ameliorated neurological deficits and reduced ferroptosis markers in MCAO-challenged mice.</div></div><div><h3>Conclusion</h3><div>IGF2BP1 serves as a critical regulator of cerebral I/R injury by exacerbating neuronal ferroptosis and sustaining detrimental microglial activation. These findings nominate IGF2BP1 inhibition as a promising strategy for ischemic stroke intervention.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 6","pages":"Article 167877"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092544392500225X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Cerebral ischemia/reperfusion (I/R) injury induces neuronal ferroptosis and microglial phenotypic shifts, driving post-ischemic neurological deficits. This study examines the regulatory role of the N6-methyladenosine (m6A) reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in coordinating these pathological processes through Keap1/Nrf2 signaling.
Methods
Cerebral I/R injury was modeled in C57BL/6 mice via middle cerebral artery occlusion (MCAO) and in hippocampal neurons and microglia through oxygen-glucose deprivation/reperfusion (OGD/R). Pro-inflammatory microglial polarization was induced by LPS/IFN-γ stimulation. IGF2BP1's functional impacts were assessed through knockdown and overexpression approaches, with mechanistic evaluations focusing on ferroptosis biomarkers, microglial polarization states, and Keap1/Nrf2 pathway activity. A microglia-neuron co-culture system elucidated cellular crosstalk mechanisms.
Results
MCAO-operated mice demonstrated upregulated IGF2BP1 expression accompanied by neuronal apoptosis and microglial M1 polarization. IGF2BP1 silencing significantly attenuated OGD/R-induced neuronal ferroptosis, evidenced by reduced iron overload (Fe2+), lipid peroxidation (MDA), and reactive oxygen species (ROS) alongside restored glutathione (GSH) levels, while concurrently enhancing GPX4 activity through Keap1/Nrf2 pathway regulation. This intervention further shifted microglial polarization toward the M2 phenotype, effectively mitigating neuroinflammatory responses. Importantly, the neuroprotective effects of IGF2BP1 knockdown were abolished upon Keap1 overexpression. Co-culture experiments revealed that IGF2BP1-depleted microglia suppressed neuronal ferroptosis via phenotypic reprogramming. In vivo validation confirmed that IGF2BP1 knockdown ameliorated neurological deficits and reduced ferroptosis markers in MCAO-challenged mice.
Conclusion
IGF2BP1 serves as a critical regulator of cerebral I/R injury by exacerbating neuronal ferroptosis and sustaining detrimental microglial activation. These findings nominate IGF2BP1 inhibition as a promising strategy for ischemic stroke intervention.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.