FaultExplainer: Leveraging large language models for interpretable fault detection and diagnosis

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Abdullah Khan, Rahul Nahar, Hao Chen, Gonzalo E. Constante Flores, Can Li
{"title":"FaultExplainer: Leveraging large language models for interpretable fault detection and diagnosis","authors":"Abdullah Khan,&nbsp;Rahul Nahar,&nbsp;Hao Chen,&nbsp;Gonzalo E. Constante Flores,&nbsp;Can Li","doi":"10.1016/j.compchemeng.2025.109152","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning algorithms are increasingly being applied to fault detection and diagnosis (FDD) in chemical processes. However, existing data-driven FDD platforms often lack interpretability for process operators and struggle to identify root causes of previously unseen faults. This paper presents <em>FaultExplainer</em>, an interactive tool designed to improve fault detection, diagnosis, and explanation in the Tennessee Eastman Process (TEP). <em>FaultExplainer</em> integrates real-time sensor data visualization, Principal Component Analysis (PCA)-based fault detection, and identification of top contributing variables within an interactive user interface powered by large language models (LLMs). We evaluate the LLMs’ reasoning capabilities in two scenarios: one where historical root causes are provided, and one where they are not to mimic the challenge of previously unseen faults. Experimental results using GPT-4o and o1-preview models demonstrate the system’s strengths in generating plausible and actionable explanations, while also highlighting its limitations, including reliance on PCA-selected features and occasional hallucinations.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"199 ","pages":"Article 109152"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001565","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning algorithms are increasingly being applied to fault detection and diagnosis (FDD) in chemical processes. However, existing data-driven FDD platforms often lack interpretability for process operators and struggle to identify root causes of previously unseen faults. This paper presents FaultExplainer, an interactive tool designed to improve fault detection, diagnosis, and explanation in the Tennessee Eastman Process (TEP). FaultExplainer integrates real-time sensor data visualization, Principal Component Analysis (PCA)-based fault detection, and identification of top contributing variables within an interactive user interface powered by large language models (LLMs). We evaluate the LLMs’ reasoning capabilities in two scenarios: one where historical root causes are provided, and one where they are not to mimic the challenge of previously unseen faults. Experimental results using GPT-4o and o1-preview models demonstrate the system’s strengths in generating plausible and actionable explanations, while also highlighting its limitations, including reliance on PCA-selected features and occasional hallucinations.
FaultExplainer:利用大型语言模型进行可解释的故障检测和诊断
机器学习算法越来越多地应用于化学过程中的故障检测和诊断(FDD)。然而,现有的数据驱动的FDD平台通常缺乏流程操作员的可解释性,并且难以识别以前未见过的故障的根本原因。本文介绍了FaultExplainer,这是一个交互式工具,旨在改进田纳西伊士曼过程(TEP)中的故障检测、诊断和解释。FaultExplainer集成了实时传感器数据可视化,基于主成分分析(PCA)的故障检测,以及由大型语言模型(llm)提供支持的交互式用户界面中的顶级贡献变量识别。我们在两种情况下评估llm的推理能力:一种是提供历史根本原因,另一种是不模拟以前未见过的故障的挑战。使用gpt - 40和01 -预览模型的实验结果表明,该系统在生成可信和可操作的解释方面具有优势,同时也突出了其局限性,包括依赖于pca选择的特征和偶尔的幻觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信