{"title":"An automated parameter optimizer for data transfer performance testing","authors":"Daqing Yun , Liudong Zuo , Yi Gu , Chase Wu","doi":"10.1016/j.simpa.2025.100764","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents an automated tool for optimizing control parameters in performance testing of big data transfer over long-fat network connections. Supporting both TCP and UDT protocols, the tool identifies the optimal configurations to enhance the efficiency of large-scale data transfers. A stochastic approximation algorithm is employed for parameter optimization, streamlining the protocol and parameter selection. The tool has been evaluated in various network scenarios, including long-haul connections in real-world high-performance networks. Its modular design also enables straightforward integration of additional data transfer protocols and alternative optimization methods.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"24 ","pages":"Article 100764"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an automated tool for optimizing control parameters in performance testing of big data transfer over long-fat network connections. Supporting both TCP and UDT protocols, the tool identifies the optimal configurations to enhance the efficiency of large-scale data transfers. A stochastic approximation algorithm is employed for parameter optimization, streamlining the protocol and parameter selection. The tool has been evaluated in various network scenarios, including long-haul connections in real-world high-performance networks. Its modular design also enables straightforward integration of additional data transfer protocols and alternative optimization methods.