{"title":"EZH2 promotes chemoresistance in colorectal cancer by inhibiting autophagy through NRP1 suppression.","authors":"Hong Deng,Qin Xu,Qiang Zhang,Chunfeng Liu,Lei Ren","doi":"10.1042/bcj20240607","DOIUrl":null,"url":null,"abstract":"Colorectal cancer (CRC) is characterized by aggressive tumor growth and chemoresistance, with Enhancer of zeste homolog 2 (EZH2) serving a pivotal role in these processes. However, the mechanisms by which it drives tumor proliferation and therapeutic resistance through autophagy regulation remain unclear. Here, we demonstrated that EZH2 expression is elevated in CRC tissues and cell lines, correlating with chemoresistance and diagnostic potential (Area Under the Curve, AUC = 0.968). EZH2 knockdown markedly reduced CRC cell proliferation, while its overexpression promoted tumor growth and increased resistance to irinotecan. Mechanistically, EZH2 suppressed autophagy in CRC cells, a process linked to chemosensitivity, by directly regulating LC3bI/II expression. Notably, EZH2 enhanced the Neuropilin-1 (NRP1) level by binding to the NRP1 promoter, thereby promoting tumor proliferation and irinotecan resistance through autophagy inhibition. NRP1 depletion partially reversed these effects, underscoring the crucial role of the EZH2-NRP1 axis in CRC. Our findings highlight that targeting the EZH2-NRP1 interaction could represent a novel therapeutic approach to overcoming chemoresistance in CRC.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"109 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/bcj20240607","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is characterized by aggressive tumor growth and chemoresistance, with Enhancer of zeste homolog 2 (EZH2) serving a pivotal role in these processes. However, the mechanisms by which it drives tumor proliferation and therapeutic resistance through autophagy regulation remain unclear. Here, we demonstrated that EZH2 expression is elevated in CRC tissues and cell lines, correlating with chemoresistance and diagnostic potential (Area Under the Curve, AUC = 0.968). EZH2 knockdown markedly reduced CRC cell proliferation, while its overexpression promoted tumor growth and increased resistance to irinotecan. Mechanistically, EZH2 suppressed autophagy in CRC cells, a process linked to chemosensitivity, by directly regulating LC3bI/II expression. Notably, EZH2 enhanced the Neuropilin-1 (NRP1) level by binding to the NRP1 promoter, thereby promoting tumor proliferation and irinotecan resistance through autophagy inhibition. NRP1 depletion partially reversed these effects, underscoring the crucial role of the EZH2-NRP1 axis in CRC. Our findings highlight that targeting the EZH2-NRP1 interaction could represent a novel therapeutic approach to overcoming chemoresistance in CRC.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling