Integrating PRISMA hyperspectral data with Sentinel-1, Sentinel-2 and Landsat data for mapping crop types and land cover in northeast Thailand

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Savittri Ratanopad Suwanlee , Zahid Naeem Qaisrani , Jaturong Som-ard , Surasak Keawsomsee , Kemin Kasa , Narissara Nuthammachot , Siwa Kaewplang , Sarawut Ninsawat , Enrico Borgogno Mondino , Samuele De Petris , Filippo Sarvia
{"title":"Integrating PRISMA hyperspectral data with Sentinel-1, Sentinel-2 and Landsat data for mapping crop types and land cover in northeast Thailand","authors":"Savittri Ratanopad Suwanlee ,&nbsp;Zahid Naeem Qaisrani ,&nbsp;Jaturong Som-ard ,&nbsp;Surasak Keawsomsee ,&nbsp;Kemin Kasa ,&nbsp;Narissara Nuthammachot ,&nbsp;Siwa Kaewplang ,&nbsp;Sarawut Ninsawat ,&nbsp;Enrico Borgogno Mondino ,&nbsp;Samuele De Petris ,&nbsp;Filippo Sarvia","doi":"10.1016/j.ejrs.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate crop types and land cover maps are pivotal for effective land management and agricultural policy, particularly in regions with complex agricultural landscapes and small field sizes. Northeast Thailand, a significant agricultural hub, faces challenges in crop classification due to its diverse crop patterns, cloud cover, and smallholder plots. This study integrates satellite data from PRISMA, Sentinel-1 (S1), Sentinel-2 (S2), and Landsat-8/9 (L8/9) imagery to address these challenges. A total of 1305 reference point were randomly collected between November and December 2022 to train and validate the proposed crop classification. Specifically, 15 different combinations using a random forest (RF) classifier were tested. The combination of all datasets achieved the highest overall accuracy (OA) of 91.5 %, followed by S1 + S2 + L8/9 (89.8 %), while PRISMA alone yielded a lower accuracy (63.8 %). The study identified nine dominant land cover classes, with cassava, rice, and sugarcane as primary crops. A strong correlation (r = 0.91) with the official Land Development Department (LDD) statistics demonstrates the robustness of the method. This research highlights the technical advantage of multi-sensor integration in overcoming the limitations of single-sensor data, providing a reliable tool for accurate crop mapping, and supporting sustainable agricultural practices in challenging environments.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 2","pages":"Pages 252-260"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982325000195","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate crop types and land cover maps are pivotal for effective land management and agricultural policy, particularly in regions with complex agricultural landscapes and small field sizes. Northeast Thailand, a significant agricultural hub, faces challenges in crop classification due to its diverse crop patterns, cloud cover, and smallholder plots. This study integrates satellite data from PRISMA, Sentinel-1 (S1), Sentinel-2 (S2), and Landsat-8/9 (L8/9) imagery to address these challenges. A total of 1305 reference point were randomly collected between November and December 2022 to train and validate the proposed crop classification. Specifically, 15 different combinations using a random forest (RF) classifier were tested. The combination of all datasets achieved the highest overall accuracy (OA) of 91.5 %, followed by S1 + S2 + L8/9 (89.8 %), while PRISMA alone yielded a lower accuracy (63.8 %). The study identified nine dominant land cover classes, with cassava, rice, and sugarcane as primary crops. A strong correlation (r = 0.91) with the official Land Development Department (LDD) statistics demonstrates the robustness of the method. This research highlights the technical advantage of multi-sensor integration in overcoming the limitations of single-sensor data, providing a reliable tool for accurate crop mapping, and supporting sustainable agricultural practices in challenging environments.
将PRISMA高光谱数据与Sentinel-1、Sentinel-2和Landsat数据整合,用于泰国东北部作物类型和土地覆盖制图
准确的作物类型和土地覆盖图对于有效的土地管理和农业政策至关重要,特别是在农业景观复杂和农田面积小的地区。泰国东北部是一个重要的农业中心,由于其多样化的作物模式、云量和小农地块,在作物分类方面面临挑战。该研究整合了PRISMA、Sentinel-1 (S1)、Sentinel-2 (S2)和Landsat-8/9 (L8/9)图像的卫星数据,以解决这些挑战。在2022年11月至12月期间,随机收集1305个参考点,对提出的作物分类进行训练和验证。具体来说,使用随机森林(RF)分类器测试了15种不同的组合。所有数据集的组合获得了最高的总体精度(OA),为91.5%,其次是S1 + S2 + L8/9(89.8%),而单独使用PRISMA的精度较低(63.8%)。该研究确定了九个主要的土地覆盖类别,其中木薯、水稻和甘蔗是主要作物。与官方土地发展部(LDD)统计数据的强相关性(r = 0.91)表明该方法的稳健性。该研究强调了多传感器集成在克服单传感器数据局限性方面的技术优势,为精确的作物制图提供了可靠的工具,并支持具有挑战性环境下的可持续农业实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信