Evaluating aufeis detection methods using Landsat imagery: Comparative assessment and recommendations

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Julian Dann , Simon Zwieback , Paul Leonard , W. Robert Bolton
{"title":"Evaluating aufeis detection methods using Landsat imagery: Comparative assessment and recommendations","authors":"Julian Dann ,&nbsp;Simon Zwieback ,&nbsp;Paul Leonard ,&nbsp;W. Robert Bolton","doi":"10.1016/j.srs.2025.100230","DOIUrl":null,"url":null,"abstract":"<div><div>In the continuous permafrost environment of the North Slope of Alaska, extensive aufeis fields develop each winter on river floodplains, primarily via discharge from perennial springs. Currently, changes to the spatial and temporal distribution of large aufeis fields are predominantly monitored using optical satellite imagery. However, existing detection methods struggle to distinguish between snow and ice surfaces.</div><div>This study compares the accuracy of two techniques for identifying aufeis in a dataset comprising 515 Landsat optical images across four aufeis fields on the North Slope of Alaska. The first method involves empirical thresholding on snow and ice indices (2FT), while the second applies random forest (RF) machine learning methods. We evaluate their performance on multiple training and test datasets with pixel-, image-, and site-based stratification. Additionally, we evaluate the utility of additional bands and indices in aufeis detection using a grid-search for the top features (3FT) and feature importance metrics.</div><div>The more complex RF classifier, which relies on an extensive training dataset, outperforms both feature thresholding methods across all validation datasets with an average F1 score of 0.967±0.029. Feature importance metrics indicate that the near-infrared is effective for distinguishing between snow and ice surfaces. These findings demonstrate that machine learning approaches significantly enhance aufeis detection capabilities in snow-affected scenes and improve the retrieval of the annual maximum aufeis extent. While scaling challenges remain for these techniques, the results provide a foundation for improving our ability to monitor regional aufeis dynamics and their role in hydrologic and permafrost systems.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100230"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017225000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the continuous permafrost environment of the North Slope of Alaska, extensive aufeis fields develop each winter on river floodplains, primarily via discharge from perennial springs. Currently, changes to the spatial and temporal distribution of large aufeis fields are predominantly monitored using optical satellite imagery. However, existing detection methods struggle to distinguish between snow and ice surfaces.
This study compares the accuracy of two techniques for identifying aufeis in a dataset comprising 515 Landsat optical images across four aufeis fields on the North Slope of Alaska. The first method involves empirical thresholding on snow and ice indices (2FT), while the second applies random forest (RF) machine learning methods. We evaluate their performance on multiple training and test datasets with pixel-, image-, and site-based stratification. Additionally, we evaluate the utility of additional bands and indices in aufeis detection using a grid-search for the top features (3FT) and feature importance metrics.
The more complex RF classifier, which relies on an extensive training dataset, outperforms both feature thresholding methods across all validation datasets with an average F1 score of 0.967±0.029. Feature importance metrics indicate that the near-infrared is effective for distinguishing between snow and ice surfaces. These findings demonstrate that machine learning approaches significantly enhance aufeis detection capabilities in snow-affected scenes and improve the retrieval of the annual maximum aufeis extent. While scaling challenges remain for these techniques, the results provide a foundation for improving our ability to monitor regional aufeis dynamics and their role in hydrologic and permafrost systems.
评估使用陆地卫星图像的大气探测方法:比较评估和建议
在阿拉斯加北坡的连续永久冻土带环境中,每年冬天,河流泛滥平原上都会形成大面积的森林,主要是通过多年生泉水的排放。目前,主要是利用光学卫星图像监测大型高原的时空分布变化。然而,现有的检测方法很难区分雪和冰的表面。本研究比较了两种识别aufeis技术的准确性,该数据集包含阿拉斯加北坡四个aufeis区域的515张Landsat光学图像。第一种方法涉及冰雪指数(2FT)的经验阈值,而第二种方法应用随机森林(RF)机器学习方法。我们用基于像素、图像和站点的分层来评估它们在多个训练和测试数据集上的性能。此外,我们使用网格搜索的顶级特征(3FT)和特征重要性指标来评估额外的波段和指数在噪声检测中的效用。更复杂的RF分类器依赖于广泛的训练数据集,在所有验证数据集上的平均F1得分为0.967±0.029,优于两种特征阈值方法。特征重要性指标表明,近红外对区分冰雪表面是有效的。这些发现表明,机器学习方法显著增强了积雪影响场景中的积雪检测能力,并改善了年最大积雪范围的检索。虽然这些技术仍然存在规模挑战,但结果为提高我们监测区域降水动态及其在水文和永久冻土系统中的作用的能力提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信