Unleashing the power of text for credit default prediction: Comparing human-written and generative AI-refined texts

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Zongxiao Wu, Yizhe Dong, Yaoyiran Li, Baofeng Shi
{"title":"Unleashing the power of text for credit default prediction: Comparing human-written and generative AI-refined texts","authors":"Zongxiao Wu, Yizhe Dong, Yaoyiran Li, Baofeng Shi","doi":"10.1016/j.ejor.2025.04.032","DOIUrl":null,"url":null,"abstract":"This study explores the integration of a representative large language model, ChatGPT, into lending decision-making with a focus on credit default prediction. Specifically, we use ChatGPT to analyse and interpret loan assessments written by loan officers and generate refined versions of these texts. Our comparative analysis reveals significant differences between generative artificial intelligence (AI)-refined and human-written texts in terms of text length, semantic similarity, and linguistic representations. Using deep learning techniques, we show that incorporating unstructured text data, particularly ChatGPT-refined texts, alongside conventional structured data significantly enhances credit default predictions. Furthermore, we demonstrate how the contents of both human-written and ChatGPT-refined assessments contribute to the models’ prediction and show that the effect of essential words is highly context-dependent. Moreover, we find that ChatGPT’s analysis of borrower delinquency contributes the most to improving predictive accuracy. We also evaluate the business impact of the models based on human-written and ChatGPT-refined texts, and find that, in most cases, the latter yields higher profitability than the former. This study provides valuable insights into the transformative potential of generative AI in financial services.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"92 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.04.032","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the integration of a representative large language model, ChatGPT, into lending decision-making with a focus on credit default prediction. Specifically, we use ChatGPT to analyse and interpret loan assessments written by loan officers and generate refined versions of these texts. Our comparative analysis reveals significant differences between generative artificial intelligence (AI)-refined and human-written texts in terms of text length, semantic similarity, and linguistic representations. Using deep learning techniques, we show that incorporating unstructured text data, particularly ChatGPT-refined texts, alongside conventional structured data significantly enhances credit default predictions. Furthermore, we demonstrate how the contents of both human-written and ChatGPT-refined assessments contribute to the models’ prediction and show that the effect of essential words is highly context-dependent. Moreover, we find that ChatGPT’s analysis of borrower delinquency contributes the most to improving predictive accuracy. We also evaluate the business impact of the models based on human-written and ChatGPT-refined texts, and find that, in most cases, the latter yields higher profitability than the former. This study provides valuable insights into the transformative potential of generative AI in financial services.
为信用违约预测释放文本的力量:比较人类编写的和生成人工智能精炼的文本
本研究探讨了将具有代表性的大型语言模型ChatGPT整合到贷款决策中,重点关注信用违约预测。具体来说,我们使用ChatGPT来分析和解释信贷员撰写的贷款评估,并生成这些文本的精炼版本。我们的比较分析揭示了生成式人工智能(AI)精炼文本和人类编写文本在文本长度、语义相似性和语言表征方面的显著差异。通过使用深度学习技术,我们发现将非结构化文本数据(特别是chatgpt精炼文本)与传统结构化数据结合在一起可以显著增强信用违约预测。此外,我们展示了人工书写和chatgpt精炼评估的内容如何有助于模型的预测,并表明基本词的效果高度依赖于上下文。此外,我们发现ChatGPT对借款人违约的分析对提高预测准确性贡献最大。我们还评估了基于人工编写和chatgpt精炼文本的模型的业务影响,并发现,在大多数情况下,后者比前者产生更高的盈利能力。这项研究为生成式人工智能在金融服务中的变革潜力提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信