Mohamed Kezzar, Sihem Gherieb, Usman, Sahar Ahmed Idris, Mohamed Rafik Sari, Abeer A. Shaaban, Ibrahim Mahariq
{"title":"Nanoparticle Aggregation Effects on MHD Nanofluid Flow Over a Permeable Sheet with Stretching/Shrinking and Thermal Radiation","authors":"Mohamed Kezzar, Sihem Gherieb, Usman, Sahar Ahmed Idris, Mohamed Rafik Sari, Abeer A. Shaaban, Ibrahim Mahariq","doi":"10.1002/adts.202401512","DOIUrl":null,"url":null,"abstract":"This research aimed to analyze the effects of both without aggregation and with aggregation of nanoparticles (i.e., titania-ethylene glycol <span data-altimg=\"/cms/asset/2ae77572-30c1-44cb-b0fd-50186dc0b993/adts202401512-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401512-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mspace style=\"width: 0.33em;\"></mjx-mspace><mjx-mrow data-semantic-children=\"14\" data-semantic-content=\"1,15\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis phi element of left bracket 0 6 percent sign right bracket right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2,13\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"14\" data-semantic-role=\"element\" data-semantic-type=\"operator\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"11\" data-semantic-content=\"4,12\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"10,8\" data-semantic-content=\"8\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"endpunct\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,7\" data-semantic-content=\"9\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.33em;\"></mjx-mspace><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\" rspace=\"3\" space=\"3\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401512:adts202401512-math-0001\" display=\"inline\" location=\"graphic/adts202401512-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mspace width=\"0.33em\"></mspace><mrow data-semantic-=\"\" data-semantic-children=\"14\" data-semantic-content=\"1,15\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis phi element of left bracket 0 6 percent sign right bracket right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"2,13\" data-semantic-content=\"3\" data-semantic-parent=\"16\" data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"14\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">φ</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"14\" data-semantic-role=\"element\" data-semantic-type=\"operator\">∈</mo><mrow data-semantic-=\"\" data-semantic-children=\"11\" data-semantic-content=\"4,12\" data-semantic-parent=\"14\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">[</mo><mrow data-semantic-=\"\" data-semantic-children=\"10,8\" data-semantic-content=\"8\" data-semantic-parent=\"13\" data-semantic-role=\"endpunct\" data-semantic-type=\"punctuated\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,7\" data-semantic-content=\"9\" data-semantic-parent=\"11\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.33em\"></mspace><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\">6</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\">%</mo></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">]</mo></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$\\ ( {\\varphi \\in[ {0\\ 6\\% } ]} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) on the velocity and temperature profiles over a permeable MHD stretching/shrinking <span data-altimg=\"/cms/asset/92900c5d-0ae8-4224-957e-c290218ff117/adts202401512-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401512-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"13\" data-semantic-content=\"0,14\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis lamda element of left bracket minus 0.6 0.6 right bracket right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"15\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,12\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"13\" data-semantic-role=\"element\" data-semantic-type=\"operator\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"10\" data-semantic-content=\"3,11\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"12\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"10\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,7\" data-semantic-content=\"8\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.33em;\"></mjx-mspace><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"12\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"15\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401512:adts202401512-math-0002\" display=\"inline\" location=\"graphic/adts202401512-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"13\" data-semantic-content=\"0,14\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis lamda element of left bracket minus 0.6 0.6 right bracket right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"15\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,12\" data-semantic-content=\"2\" data-semantic-parent=\"15\" data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"13\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">λ</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"13\" data-semantic-role=\"element\" data-semantic-type=\"operator\">∈</mo><mrow data-semantic-=\"\" data-semantic-children=\"10\" data-semantic-content=\"3,11\" data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"12\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">[</mo><mrow data-semantic-=\"\" data-semantic-children=\"9\" data-semantic-content=\"4\" data-semantic-parent=\"12\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"10\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,7\" data-semantic-content=\"8\" data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"float\" data-semantic-type=\"number\">0.6</mn><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.33em\"></mspace><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"float\" data-semantic-type=\"number\">0.6</mn></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"12\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">]</mo></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"15\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$( {\\lambda \\in[ { - 0.6\\ 0.6} ]} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> sheet with permeability parameter <span data-altimg=\"/cms/asset/3850df2c-3845-4041-b151-a1c4686dbe31/adts202401512-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401512-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"11\" data-semantic-content=\"0,12\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper S element of left bracket 0 0.8 right bracket right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,10\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"11\" data-semantic-role=\"element\" data-semantic-type=\"operator\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"3,9\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"4,6\" data-semantic-content=\"7\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.33em;\"></mjx-mspace><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401512:adts202401512-math-0003\" display=\"inline\" location=\"graphic/adts202401512-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"11\" data-semantic-content=\"0,12\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper S element of left bracket 0 0.8 right bracket right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,10\" data-semantic-content=\"2\" data-semantic-parent=\"13\" data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">S</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"11\" data-semantic-role=\"element\" data-semantic-type=\"operator\">∈</mo><mrow data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-content=\"3,9\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">[</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"4,6\" data-semantic-content=\"7\" data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.33em\"></mspace><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"float\" data-semantic-type=\"number\">0.8</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">]</mo></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$( {S\\in[ {0\\ 0.8} ]} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and thermal radiation <span data-altimg=\"/cms/asset/dd2e2418-64ae-4347-99f9-5338853c4744/adts202401512-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401512-math-0004.png\"><mjx-semantics><mjx-mrow><mjx-mspace style=\"width: 0.33em;\"></mjx-mspace><mjx-mrow data-semantic-children=\"15\" data-semantic-content=\"1,16\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper R d element of left bracket 0 0.4 right bracket right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"14,12\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"13\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"15\" data-semantic-role=\"element\" data-semantic-type=\"operator\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"10\" data-semantic-content=\"5,11\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"12\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"6,8\" data-semantic-content=\"9\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.33em;\"></mjx-mspace><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"12\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401512:adts202401512-math-0004\" display=\"inline\" location=\"graphic/adts202401512-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mspace width=\"0.33em\"></mspace><mrow data-semantic-=\"\" data-semantic-children=\"15\" data-semantic-content=\"1,16\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper R d element of left bracket 0 0.4 right bracket right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"14,12\" data-semantic-content=\"4\" data-semantic-parent=\"17\" data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"13\" data-semantic-parent=\"15\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">R</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"15\" data-semantic-role=\"element\" data-semantic-type=\"operator\">∈</mo><mrow data-semantic-=\"\" data-semantic-children=\"10\" data-semantic-content=\"5,11\" data-semantic-parent=\"15\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"12\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">[</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"6,8\" data-semantic-content=\"9\" data-semantic-parent=\"12\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.33em\"></mspace><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"10\" data-semantic-role=\"float\" data-semantic-type=\"number\">0.4</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"12\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">]</mo></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$\\ ( {Rd\\in[ {0\\ 0.4} ]} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. For the purpose of studying nanoparticle aggregation, the improved Maxwell-Bruggeman and Krieger-Dougarty models are applied. By applying the similarity transformation, the simple partial differential equations that arise from mathematical modeling are transformed into nonlinear ordinary differential equations. The calculated nonlinear equation is then numerically solved using the Runge-Kutta-Fehlberg 4th-5th (RKF45) order method with shooting technique and analytically via the Adomian decomposition method (ADM). For validation, the outcomes of this inquiry are linked with those outcomes that are available in the literature. In addition, the acquired analytical ADM data are compared to numerical RKF45, homotopy analysis method (HAM)-package values, and those given in the literature. It is found that the skin friction coefficient is also lower in the presence of aggregation effects than in the absence of such effects. Furthermore, when the sheet is shrinking, the heat transport (HT) coefficient decreases and increases, respectively, with stretching. The aggregation of nanoparticles reduces the HT coefficient.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401512","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This research aimed to analyze the effects of both without aggregation and with aggregation of nanoparticles (i.e., titania-ethylene glycol ) on the velocity and temperature profiles over a permeable MHD stretching/shrinking sheet with permeability parameter and thermal radiation . For the purpose of studying nanoparticle aggregation, the improved Maxwell-Bruggeman and Krieger-Dougarty models are applied. By applying the similarity transformation, the simple partial differential equations that arise from mathematical modeling are transformed into nonlinear ordinary differential equations. The calculated nonlinear equation is then numerically solved using the Runge-Kutta-Fehlberg 4th-5th (RKF45) order method with shooting technique and analytically via the Adomian decomposition method (ADM). For validation, the outcomes of this inquiry are linked with those outcomes that are available in the literature. In addition, the acquired analytical ADM data are compared to numerical RKF45, homotopy analysis method (HAM)-package values, and those given in the literature. It is found that the skin friction coefficient is also lower in the presence of aggregation effects than in the absence of such effects. Furthermore, when the sheet is shrinking, the heat transport (HT) coefficient decreases and increases, respectively, with stretching. The aggregation of nanoparticles reduces the HT coefficient.
本研究旨在分析无聚集和有聚集的纳米粒子(即钛-乙二醇(φ∈[06]))的影响%])$\ ( {\varphi \in[ {0\ 6\% } ]} )$) on the velocity and temperature profiles over a permeable MHD stretching/shrinking (λ∈[−0.60.6])$( {\lambda \in[ { - 0.6\ 0.6} ]} )$ sheet with permeability parameter (S∈[00.8])$( {S\in[ {0\ 0.8} ]} )$ and thermal radiation (Rd∈[00.4])$\ ( {Rd\in[ {0\ 0.4} ]} )$. For the purpose of studying nanoparticle aggregation, the improved Maxwell-Bruggeman and Krieger-Dougarty models are applied. By applying the similarity transformation, the simple partial differential equations that arise from mathematical modeling are transformed into nonlinear ordinary differential equations. The calculated nonlinear equation is then numerically solved using the Runge-Kutta-Fehlberg 4th-5th (RKF45) order method with shooting technique and analytically via the Adomian decomposition method (ADM). For validation, the outcomes of this inquiry are linked with those outcomes that are available in the literature. In addition, the acquired analytical ADM data are compared to numerical RKF45, homotopy analysis method (HAM)-package values, and those given in the literature. It is found that the skin friction coefficient is also lower in the presence of aggregation effects than in the absence of such effects. Furthermore, when the sheet is shrinking, the heat transport (HT) coefficient decreases and increases, respectively, with stretching. The aggregation of nanoparticles reduces the HT coefficient.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics