{"title":"Excavator 3D pose estimation from point cloud with self-supervised deep learning","authors":"Mingyu Zhang, Wenkang Guo, Jiawen Zhang, Shuai Han, Heng Li, Hongzhe Yue","doi":"10.1111/mice.13500","DOIUrl":null,"url":null,"abstract":"Pose estimation of excavators is a fundamental yet challenging task with significant implications for intelligent construction. Traditional methods based on cameras or sensors are often limited by their ability to perceive spatial structures. To address this, 3D light detection and ranging has emerged as a promising paradigm for excavator pose estimation. However, these methods face significant challenges: (1) accurate 3D pose annotations are labor-intensive and costly, and (2) excavators exhibit complex kinematics and geometric structures, further complicating pose estimation. In this study, a novel framework is proposed for full-body excavator pose estimation directly from 3D point clouds, without relying on manual 3D annotations. The excavator pose is parameterized using pose parameters of geometric primitives under kinematic constraints. A unified deep network is designed to predict pose parameters from point clouds. The network is initially pre-trained on synthetic data to provide parameter initialization and then fine-tuned using real-world data. To facilitate label-free training, the self-supervised loss functions are designed by exploiting the geometric and kinematic consistency between point clouds and excavators. Experimental results on real-world construction sites demonstrate the effectiveness and robustness of the proposed method, achieving an average pose estimation accuracy of 0.26 m. The method also exhibits promising performance across various excavator operational scenarios, highlighting its potential for real-world applications.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"22 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13500","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Pose estimation of excavators is a fundamental yet challenging task with significant implications for intelligent construction. Traditional methods based on cameras or sensors are often limited by their ability to perceive spatial structures. To address this, 3D light detection and ranging has emerged as a promising paradigm for excavator pose estimation. However, these methods face significant challenges: (1) accurate 3D pose annotations are labor-intensive and costly, and (2) excavators exhibit complex kinematics and geometric structures, further complicating pose estimation. In this study, a novel framework is proposed for full-body excavator pose estimation directly from 3D point clouds, without relying on manual 3D annotations. The excavator pose is parameterized using pose parameters of geometric primitives under kinematic constraints. A unified deep network is designed to predict pose parameters from point clouds. The network is initially pre-trained on synthetic data to provide parameter initialization and then fine-tuned using real-world data. To facilitate label-free training, the self-supervised loss functions are designed by exploiting the geometric and kinematic consistency between point clouds and excavators. Experimental results on real-world construction sites demonstrate the effectiveness and robustness of the proposed method, achieving an average pose estimation accuracy of 0.26 m. The method also exhibits promising performance across various excavator operational scenarios, highlighting its potential for real-world applications.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.