{"title":"Lymph node macrophage-targeted interferon alpha boosts anticancer immune responses by regulating CD169-positive phenotype of macrophages","authors":"Ryo Fukuda, Yukio Fujiwara, Hitoshi Maeda, Cheng Pan, Yuki Minayoshi, Hiromu Yano, Yuki Mizuta, Mei Takano, Rin Yamada, Yoichi Saito, Kenshiro Hirata, Shuhei Imoto, Keishi Yamasaki, Kentaro Oniki, Junji Saruwatari, Masaki Otagiri, Hiroshi Watanabe, Yoshihiro Komohara, Toru Maruyama","doi":"10.1186/s12943-025-02324-8","DOIUrl":null,"url":null,"abstract":"CD169+ macrophages in lymph nodes (LNs) activate cytotoxic T lymphocytes (CTLs), which play a crucial role in anticancer immunity, through antigen presentation and co-stimulation by CD169. Interferon alpha (IFNα) is capable of inducing the CD169+ phenotype of macrophages; however, its clinical applications have been hindered by pharmacokinetic limitations—low LN distribution and an inability to target macrophages. To overcome these issues, this study genetically fused mouse IFNα (mIFNα) with mannosylated mouse serum albumin (Man-MSA), and investigated the antitumor effects of the hybrid protein (Man-MSA-mIFNα) or its add-on effects with programmed death-ligand 1 (PD-L1) blockade. To confirm the possibility of CD169+ macrophage-mediated T cell priming, positional information about individual immune cells in LNs of cancer patients was obtained. Traits of Man-MSA-mIFNα, which was prepared using Pichia pastoris to form the high-mannose structure, were characterized by several physicochemical methods. To evaluate the lymphatic drainage of Man-MSA-mIFNα, radioiodine or Cy5-labeled Man-MSA-mIFNα was subcutaneously administered in mice, and then the radioactivity or fluorescence in LNs was analyzed. CD169-diphtheria toxin (DT) receptor (CD169-DTR) mice in which LN CD169+ macrophages can be depleted by DT injection were used to verify whether the antitumor effect of Man-MSA-mIFNα is dependent on LN CD169+ macrophages. Multiplex tissue imaging predicted close proximity of CD169+ macrophages and T cells and positive correlation between the number of CD169+ macrophages and T cells in neighborhoods in LNs of cancer patients. Physicochemical analyses showed that Man-MSA-mIFNα was formed from the fusion of the intact Man-MSA and mIFNα. Man-MSA-mIFNα efficiently induced the CD169+ phenotype of macrophages by its high LN distribution and macrophage-targeting capability, and significantly exerted antitumor activity through CD8+ T cell activation in the LNs, whereas its antitumor effects were canceled in CD169-DTR mice. Finally, combination therapy with PD-L1 blockade markedly suppressed tumor growth in MB49-bearing mice, which exhibit resistance to PD-L1 blockade monotherapy. The present study successfully designed and developed Man-MSA-mIFNα, which efficiently induces the CD169+ phenotype in LN macrophages, contributing to the antitumor immunity. The findings suggest that our novel strategy targeting CD169⁺ macrophages could be a promising immunotherapy for cancer patients who are unresponsive to immune checkpoint inhibitors. ","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"7 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02324-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CD169+ macrophages in lymph nodes (LNs) activate cytotoxic T lymphocytes (CTLs), which play a crucial role in anticancer immunity, through antigen presentation and co-stimulation by CD169. Interferon alpha (IFNα) is capable of inducing the CD169+ phenotype of macrophages; however, its clinical applications have been hindered by pharmacokinetic limitations—low LN distribution and an inability to target macrophages. To overcome these issues, this study genetically fused mouse IFNα (mIFNα) with mannosylated mouse serum albumin (Man-MSA), and investigated the antitumor effects of the hybrid protein (Man-MSA-mIFNα) or its add-on effects with programmed death-ligand 1 (PD-L1) blockade. To confirm the possibility of CD169+ macrophage-mediated T cell priming, positional information about individual immune cells in LNs of cancer patients was obtained. Traits of Man-MSA-mIFNα, which was prepared using Pichia pastoris to form the high-mannose structure, were characterized by several physicochemical methods. To evaluate the lymphatic drainage of Man-MSA-mIFNα, radioiodine or Cy5-labeled Man-MSA-mIFNα was subcutaneously administered in mice, and then the radioactivity or fluorescence in LNs was analyzed. CD169-diphtheria toxin (DT) receptor (CD169-DTR) mice in which LN CD169+ macrophages can be depleted by DT injection were used to verify whether the antitumor effect of Man-MSA-mIFNα is dependent on LN CD169+ macrophages. Multiplex tissue imaging predicted close proximity of CD169+ macrophages and T cells and positive correlation between the number of CD169+ macrophages and T cells in neighborhoods in LNs of cancer patients. Physicochemical analyses showed that Man-MSA-mIFNα was formed from the fusion of the intact Man-MSA and mIFNα. Man-MSA-mIFNα efficiently induced the CD169+ phenotype of macrophages by its high LN distribution and macrophage-targeting capability, and significantly exerted antitumor activity through CD8+ T cell activation in the LNs, whereas its antitumor effects were canceled in CD169-DTR mice. Finally, combination therapy with PD-L1 blockade markedly suppressed tumor growth in MB49-bearing mice, which exhibit resistance to PD-L1 blockade monotherapy. The present study successfully designed and developed Man-MSA-mIFNα, which efficiently induces the CD169+ phenotype in LN macrophages, contributing to the antitumor immunity. The findings suggest that our novel strategy targeting CD169⁺ macrophages could be a promising immunotherapy for cancer patients who are unresponsive to immune checkpoint inhibitors.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.