{"title":"Electroacupuncture Inhibits Ferroptosis by Modulating Iron Metabolism and Oxidative Stress to Alleviate Cerebral Ischemia–Reperfusion Injury","authors":"Yaoyao Liu, Qi Wang, Ziwen Hou, Ying Gao, Peng Li","doi":"10.1007/s12031-025-02355-2","DOIUrl":null,"url":null,"abstract":"<div><p>Ischemic stroke (IS) is one of the leading causes of mortality and long-term disability worldwide. Electroacupuncture (EA) is commonly used in the treatment of IS, meaning that may reduce cerebral ischemia–reperfusion injury (CIRI). The middle cerebral artery occlusion/reperfusion (MCAO/R) rat models were created by the modified Zea Longa suture method. EA treatment was performed for 7 consecutive days at the acupoints Neiguan (PC6), Shuigou (GV26), and Sanyinjiao (SP6). The neurological function was assessed using the Zausinger six-point neurological deficiency score. The cerebral infarct volume was detected by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Hematoxylin and eosin (HE) staining was employed to observe the pathological changes in brain tissues. Prussian blue staining was employed to investigate iron deposition within the brain tissues. Transmission electron microscopy (TEM) was utilized to examine the morphological characteristics of mitochondria. Simultaneously, flow cytometry was utilized to detect the fluorescence intensity of reactive oxygen species (ROS). Assay kits were employed to measure the levels of Fe<sup>2+</sup> and glutathione (GSH). Additionally, western blot (WB) and real-time quantitative polymerase chain reaction (RT-qPCR) assays were performed to evaluate the expression levels of proteins associated with ferroptosis. Compared with the MCAO/R group, both the MCAO/R + EA and MCAO/R + DFO groups exhibited significant improvements in neurological function following cerebral ischemia–reperfusion (CIR), attenuated the pathological brain tissue injury, and reduced the cerebral infarct volume and iron deposition in brain tissue. Furthermore, both the MCAO/R + EA and MCAO/R + DFO groups displayed a marked reduction in mitochondrial injury. There was a substantial decrease in Fe<sup>2+</sup> and ROS levels, accompanied by a notable increase in GSH level and glutathione peroxidase 4 (GPX4) activity. Compared with the MCAO/R group, the levels of ferroportin1 (FPN1) protein and mRNA expression were significantly increased in the MCAO/R + EA and MCAO/R + DFO groups, and the expression levels of transferrin (TF), transferrin receptor 1 (TFR1), divalent metal transporter 1 (DMT1) protein and mRNA, as well as ferritin (FER) protein, were significantly decreased. EA inhibits ferroptosis by modulating iron metabolism and oxidative stress to alleviate CIRI, exerting neuroprotective effects.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-025-02355-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02355-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke (IS) is one of the leading causes of mortality and long-term disability worldwide. Electroacupuncture (EA) is commonly used in the treatment of IS, meaning that may reduce cerebral ischemia–reperfusion injury (CIRI). The middle cerebral artery occlusion/reperfusion (MCAO/R) rat models were created by the modified Zea Longa suture method. EA treatment was performed for 7 consecutive days at the acupoints Neiguan (PC6), Shuigou (GV26), and Sanyinjiao (SP6). The neurological function was assessed using the Zausinger six-point neurological deficiency score. The cerebral infarct volume was detected by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Hematoxylin and eosin (HE) staining was employed to observe the pathological changes in brain tissues. Prussian blue staining was employed to investigate iron deposition within the brain tissues. Transmission electron microscopy (TEM) was utilized to examine the morphological characteristics of mitochondria. Simultaneously, flow cytometry was utilized to detect the fluorescence intensity of reactive oxygen species (ROS). Assay kits were employed to measure the levels of Fe2+ and glutathione (GSH). Additionally, western blot (WB) and real-time quantitative polymerase chain reaction (RT-qPCR) assays were performed to evaluate the expression levels of proteins associated with ferroptosis. Compared with the MCAO/R group, both the MCAO/R + EA and MCAO/R + DFO groups exhibited significant improvements in neurological function following cerebral ischemia–reperfusion (CIR), attenuated the pathological brain tissue injury, and reduced the cerebral infarct volume and iron deposition in brain tissue. Furthermore, both the MCAO/R + EA and MCAO/R + DFO groups displayed a marked reduction in mitochondrial injury. There was a substantial decrease in Fe2+ and ROS levels, accompanied by a notable increase in GSH level and glutathione peroxidase 4 (GPX4) activity. Compared with the MCAO/R group, the levels of ferroportin1 (FPN1) protein and mRNA expression were significantly increased in the MCAO/R + EA and MCAO/R + DFO groups, and the expression levels of transferrin (TF), transferrin receptor 1 (TFR1), divalent metal transporter 1 (DMT1) protein and mRNA, as well as ferritin (FER) protein, were significantly decreased. EA inhibits ferroptosis by modulating iron metabolism and oxidative stress to alleviate CIRI, exerting neuroprotective effects.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.