Joe Carthy;Pablo Rey-Devesa;Manuel Titos;Carmen Benitez
{"title":"Volcano-Seismic Event Detection and Clustering","authors":"Joe Carthy;Pablo Rey-Devesa;Manuel Titos;Carmen Benitez","doi":"10.1109/JSTARS.2025.3559412","DOIUrl":null,"url":null,"abstract":"This study looks into unsupervised and supervised methods for detecting events in volcano-seismic time series data, segmenting the data, and clustering the segments where there is activity. This two-stage pipeline allows for the analysis of the signals without requiring the type of event to be identified at the offset and reduces the manpower required to analyze new data. Due to the resource intensive labeling process required to understand volcano-seismic signals it is important to explore unsupervised analysis techniques in this domain. The unsupervised methods are evaluated using supervised metrics including completeness, homogeneity, and V-measure scores. Alongside the unsupervised investigation, the use of intersection-based metrics that offer a clearer performance evaluation of the event segmentation task is motivated and the potential of gradient boosted trees for event detection is tested.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"11276-11289"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10978850","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10978850/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study looks into unsupervised and supervised methods for detecting events in volcano-seismic time series data, segmenting the data, and clustering the segments where there is activity. This two-stage pipeline allows for the analysis of the signals without requiring the type of event to be identified at the offset and reduces the manpower required to analyze new data. Due to the resource intensive labeling process required to understand volcano-seismic signals it is important to explore unsupervised analysis techniques in this domain. The unsupervised methods are evaluated using supervised metrics including completeness, homogeneity, and V-measure scores. Alongside the unsupervised investigation, the use of intersection-based metrics that offer a clearer performance evaluation of the event segmentation task is motivated and the potential of gradient boosted trees for event detection is tested.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.