Progressive multi-scale attention neural network for pneumonia classification in chest X-rays

Q1 Medicine
Mohammad Reza Mahdiani
{"title":"Progressive multi-scale attention neural network for pneumonia classification in chest X-rays","authors":"Mohammad Reza Mahdiani","doi":"10.1016/j.imu.2025.101646","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel Progressive Multi-Scale Attention Network (PMSAN) with an integrated Edge-Aware Loss function for improved pneumonia classification in chest X-rays. Unlike previous methods that overlook fine-grained edge information or fail to integrate multi-scale contextual features, our approach synergistically combines convolutional multi-scale feature extraction using depthwise separable convolutions with cross-layer feature fusion, Transformer blocks, advanced attention mechanisms<strong>,</strong> and a custom loss function that emphasizes diagnostically relevant edge details using Canny edge detection. Evaluated on the Kaggle chest X-ray pneumonia dataset—with optimal hyperparameters determined via extensive Optuna-based search—our model achieves a cross-validated accuracy of 97.3 % ± 0.4 % and an AUC of 0.995 <strong>±</strong> 0.002 on the test set. Ablation studies and statistical significance tests confirm the contributions of each component, while visualizations demonstrate the model's ability to focus on clinically relevant regions. These substantial performance gains, along with a significant reduction in misdiagnoses<strong>,</strong> underscore the clinical potential of our efficient and accurate approach in supporting radiologists and improving patient outcomes.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"55 ","pages":"Article 101646"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914825000346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel Progressive Multi-Scale Attention Network (PMSAN) with an integrated Edge-Aware Loss function for improved pneumonia classification in chest X-rays. Unlike previous methods that overlook fine-grained edge information or fail to integrate multi-scale contextual features, our approach synergistically combines convolutional multi-scale feature extraction using depthwise separable convolutions with cross-layer feature fusion, Transformer blocks, advanced attention mechanisms, and a custom loss function that emphasizes diagnostically relevant edge details using Canny edge detection. Evaluated on the Kaggle chest X-ray pneumonia dataset—with optimal hyperparameters determined via extensive Optuna-based search—our model achieves a cross-validated accuracy of 97.3 % ± 0.4 % and an AUC of 0.995 ± 0.002 on the test set. Ablation studies and statistical significance tests confirm the contributions of each component, while visualizations demonstrate the model's ability to focus on clinically relevant regions. These substantial performance gains, along with a significant reduction in misdiagnoses, underscore the clinical potential of our efficient and accurate approach in supporting radiologists and improving patient outcomes.
渐进式多尺度注意神经网络在胸片肺炎分型中的应用
我们提出了一种新的渐进式多尺度注意力网络(PMSAN),该网络具有集成的边缘感知损失功能,用于改进胸部x射线中的肺炎分类。与以往忽略细粒度边缘信息或未能整合多尺度上下文特征的方法不同,我们的方法协同结合了使用深度可分离卷积的卷积多尺度特征提取与跨层特征融合、Transformer块、高级注意机制和使用Canny边缘检测强调诊断相关边缘细节的自定义损失函数。在Kaggle胸片肺炎数据集(通过广泛的基于optuna的搜索确定最佳超参数)上进行评估,我们的模型在测试集上实现了97.3%±0.4%的交叉验证准确率和0.995±0.002的AUC。消融研究和统计显著性检验证实了每个组成部分的贡献,而可视化显示了该模型专注于临床相关区域的能力。这些显著的性能提升,以及误诊率的显著降低,突显了我们高效准确的方法在支持放射科医生和改善患者预后方面的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信