Coating of Remdesivir and Ivermectin on silver nanoparticles: A density functional theory and molecular dynamics study

Razieh Morad
{"title":"Coating of Remdesivir and Ivermectin on silver nanoparticles: A density functional theory and molecular dynamics study","authors":"Razieh Morad","doi":"10.1016/j.rsurfi.2025.100540","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient delivery of antiviral drugs remains a challenge, requiring innovative strategies to enhance stability and controlled release. This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate the adsorption behavior of Remdesivir and Ivermectin on silver nanoparticles (AgNPs). DFT calculations reveal that Remdesivir exhibits a stronger adsorption affinity (−2.16 eV) and higher charge transfer (0.473 e) compared to Ivermectin (−2.03 eV, 0.415 e), suggesting enhanced electronic interactions with Ag(111). The electrostatic potential (ESP) maps and HOMO-LUMO analysis further confirm Remdesivir's superior binding characteristics. MD simulations support these findings, showing higher RDF peak intensity and lower interaction energy (−2700 kJ/mol for Remdesivir vs. −1600 kJ/mol for Ivermectin), indicating stronger adsorption. The RMSD analysis, conducted after 5 ns of equilibrium, reveals that Remdesivir exhibits greater structural flexibility (∼0.6 nm), while Ivermectin remains more rigidly adsorbed (∼0.5 nm). These results suggest that Remdesivir-coated AgNPs offer enhanced stability, while Ivermectin may allow for controlled drug release. By integrating DFT and MD approaches, this study provides a theoretical framework for optimizing AgNP-based drug delivery systems. The findings contribute to the development of next-generation nanotherapeutics for improved antiviral drug efficacy and targeted delivery.</div></div>","PeriodicalId":21085,"journal":{"name":"Results in Surfaces and Interfaces","volume":"19 ","pages":"Article 100540"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666845925001278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient delivery of antiviral drugs remains a challenge, requiring innovative strategies to enhance stability and controlled release. This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate the adsorption behavior of Remdesivir and Ivermectin on silver nanoparticles (AgNPs). DFT calculations reveal that Remdesivir exhibits a stronger adsorption affinity (−2.16 eV) and higher charge transfer (0.473 e) compared to Ivermectin (−2.03 eV, 0.415 e), suggesting enhanced electronic interactions with Ag(111). The electrostatic potential (ESP) maps and HOMO-LUMO analysis further confirm Remdesivir's superior binding characteristics. MD simulations support these findings, showing higher RDF peak intensity and lower interaction energy (−2700 kJ/mol for Remdesivir vs. −1600 kJ/mol for Ivermectin), indicating stronger adsorption. The RMSD analysis, conducted after 5 ns of equilibrium, reveals that Remdesivir exhibits greater structural flexibility (∼0.6 nm), while Ivermectin remains more rigidly adsorbed (∼0.5 nm). These results suggest that Remdesivir-coated AgNPs offer enhanced stability, while Ivermectin may allow for controlled drug release. By integrating DFT and MD approaches, this study provides a theoretical framework for optimizing AgNP-based drug delivery systems. The findings contribute to the development of next-generation nanotherapeutics for improved antiviral drug efficacy and targeted delivery.
瑞德西韦和伊维菌素包被纳米银:密度泛函理论和分子动力学研究
抗病毒药物的有效递送仍然是一个挑战,需要创新的策略来提高稳定性和控制释放。本研究采用密度泛函理论(DFT)和分子动力学(MD)模拟研究了瑞德西韦和伊维菌素在银纳米颗粒(AgNPs)上的吸附行为。DFT计算显示,与伊维菌素(- 2.03 eV, 0.415 e)相比,Remdesivir具有更强的吸附亲和力(- 2.16 eV)和更高的电荷转移(0.473 e),表明与Ag(111)的电子相互作用增强。静电电位(ESP)图谱和HOMO-LUMO分析进一步证实了Remdesivir优越的结合特性。MD模拟支持这些发现,显示出更高的RDF峰强度和更低的相互作用能(Remdesivir为- 2700 kJ/mol,而伊维菌素为- 1600 kJ/mol),表明更强的吸附。平衡5ns后进行的RMSD分析显示,Remdesivir具有更大的结构灵活性(~ 0.6 nm),而伊维菌素仍然具有更强的刚性吸附(~ 0.5 nm)。这些结果表明,瑞德西韦包被的AgNPs提供了更高的稳定性,而伊维菌素可能允许控制药物释放。通过整合DFT和MD方法,本研究为优化基于agnp的给药系统提供了理论框架。这些发现有助于下一代纳米疗法的发展,以提高抗病毒药物的疗效和靶向给药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信