Da Gu , Yulin Sun , Jianghui Wang , Jinpeng Sun , Huanmin Lou , Weiting Kang
{"title":"Metformin regulates ferroptosis in Skin cutaneous melanoma via ATF3/NRF2 axis","authors":"Da Gu , Yulin Sun , Jianghui Wang , Jinpeng Sun , Huanmin Lou , Weiting Kang","doi":"10.1016/j.cancergen.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>To explore the effects of metformin on the proliferation and ferroptosis of skin cutaneous melanoma (SKCM) and its potential molecular mechanisms, providing a new theoretical basis and strategy for the treatment of cutaneous melanoma.</div></div><div><h3>Methods</h3><div>The CCK-8 experiment was used to detect the effect of metformin on the proliferation of skin cutaneous melanoma cells. Kits were used to detect glutathione (GSH) content, reactive oxygen species (ROS), lipid peroxide (LPO), and malondialdehyde (MDA) levels to evaluate ferroptosis-related indicators. RNA-seq sequencing and related analyses were used to screen differentially expressed genes and explore their involved biological functions and signaling pathways. Western blot was used to detect the expression levels of ATF3 and NRF2 proteins and analyze the regulatory effect of metformin on the ATF3/NRF2 axis.</div></div><div><h3>Results</h3><div>Metformin significantly reduced the proliferation ability of skin cutaneous melanoma cells. The treated cells showed a decrease in GSH content and an accumulation of ROS, LPO, and MDA, suggesting that ferroptosis was regulated. RNA-seq analysis found 2068 differentially expressed genes, of which 897 were up-regulated and 1171 were down-regulated. The related pathways such as iron metabolism disorders and ferroptosis were activated. After metformin treatment, the expression of ATF3 mRNA in cells increased and was positively correlated with the concentration, while the expression in SKCM tissues decreased. At the same time, the expression of ATF3 protein increased and the expression of NRF2 protein decreased, suggesting that metformin may induce ferroptosis through the ATF3/NRF2 axis.</div></div><div><h3>Conclusion</h3><div>Metformin can induce ferroptosis by regulating ATF3/NRF2 axis, which may be a novel strategy for improving the treatment of skin cutaneous melanoma.</div></div>","PeriodicalId":49225,"journal":{"name":"Cancer Genetics","volume":"294 ","pages":"Pages 136-144"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210776225000511","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
To explore the effects of metformin on the proliferation and ferroptosis of skin cutaneous melanoma (SKCM) and its potential molecular mechanisms, providing a new theoretical basis and strategy for the treatment of cutaneous melanoma.
Methods
The CCK-8 experiment was used to detect the effect of metformin on the proliferation of skin cutaneous melanoma cells. Kits were used to detect glutathione (GSH) content, reactive oxygen species (ROS), lipid peroxide (LPO), and malondialdehyde (MDA) levels to evaluate ferroptosis-related indicators. RNA-seq sequencing and related analyses were used to screen differentially expressed genes and explore their involved biological functions and signaling pathways. Western blot was used to detect the expression levels of ATF3 and NRF2 proteins and analyze the regulatory effect of metformin on the ATF3/NRF2 axis.
Results
Metformin significantly reduced the proliferation ability of skin cutaneous melanoma cells. The treated cells showed a decrease in GSH content and an accumulation of ROS, LPO, and MDA, suggesting that ferroptosis was regulated. RNA-seq analysis found 2068 differentially expressed genes, of which 897 were up-regulated and 1171 were down-regulated. The related pathways such as iron metabolism disorders and ferroptosis were activated. After metformin treatment, the expression of ATF3 mRNA in cells increased and was positively correlated with the concentration, while the expression in SKCM tissues decreased. At the same time, the expression of ATF3 protein increased and the expression of NRF2 protein decreased, suggesting that metformin may induce ferroptosis through the ATF3/NRF2 axis.
Conclusion
Metformin can induce ferroptosis by regulating ATF3/NRF2 axis, which may be a novel strategy for improving the treatment of skin cutaneous melanoma.
期刊介绍:
The aim of Cancer Genetics is to publish high quality scientific papers on the cellular, genetic and molecular aspects of cancer, including cancer predisposition and clinical diagnostic applications. Specific areas of interest include descriptions of new chromosomal, molecular or epigenetic alterations in benign and malignant diseases; novel laboratory approaches for identification and characterization of chromosomal rearrangements or genomic alterations in cancer cells; correlation of genetic changes with pathology and clinical presentation; and the molecular genetics of cancer predisposition. To reach a basic science and clinical multidisciplinary audience, we welcome original full-length articles, reviews, meeting summaries, brief reports, and letters to the editor.