Linlin Li , Jialin Zhang , Huiqing Li , Liying Qin , Han Wu , Zijiao Li , Lei Cai , Di Chen , Jianping Yang , Yibing Chen , Ya Xie
{"title":"Targeted inhibition of JMJD2C/MALAT1 axis compensates for the deficiency of metformin in reversing ovarian cancer platinum resistance","authors":"Linlin Li , Jialin Zhang , Huiqing Li , Liying Qin , Han Wu , Zijiao Li , Lei Cai , Di Chen , Jianping Yang , Yibing Chen , Ya Xie","doi":"10.1016/j.lfs.2025.123663","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>We explored JMJD2C’s role in platinum resistance in ovarian cancer and its modulation by metformin to propose strategies for overcoming treatment limitations.</div></div><div><h3>Materials and methods</h3><div>JMJD2C and MALAT1 expression was assessed via RT-qPCR, western blotting, and immunohistochemical assays using OC cell lines, tissue from OC patients, and xenograft treatment with or without metformin. CCK-8 assays, flow cytometry, inductively coupled plasma mass spectrometry, luciferase reporter assays, and ChIP assays were employed to evaluate the impact of JMJD2C/MALAT1 on PR and the effects of metformin on JMJD2C. The effects of metformin in combination with JMJD2C knockdown were assessed in vitro and in vivo.</div></div><div><h3>Key findings</h3><div>JMJD2C and MALAT1 expression was higher in tissue samples from platinum-resistant phase compared to those from paired platinum-sensitive phase. JMJD2C upregulated MALAT1 in platinum-resistant ovarian cancer (PROC) cells by demethylating its promoter at sites H3K9m3 and H3K36m3. Overexpression of JMJD2C or MALAT1 promoted PR by activating NF-κB/P-gp and P38 MAPK/ERCC1 signaling pathways, with their knockdown produced the opposite effect. Metformin increased JMJD2C expression in tumor tissue, cell lines, and a xenograft model of OC; however, elevated JMJD2C expression attenuated the PR-reversal efficacy of low-concentration metformin. Low-dose metformin combined with JMJD2C-knockdown effectively reversed PR both in in vitro and in vivo, achieving better results than either treatment alone.</div></div><div><h3>Significance</h3><div>JMJD2C drives PR in OC by demethylating the MALAT1 promoter. Metformin upregulated JMJD2C expression, thus necessitating a higher effective dosage of metformin. Targeted inhibition of JMJD2C synergistically enhanced the efficacy of low-dose metformin in overcoming PR, thus providing a promising approach for addressing PR.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"373 ","pages":"Article 123663"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002432052500298X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
We explored JMJD2C’s role in platinum resistance in ovarian cancer and its modulation by metformin to propose strategies for overcoming treatment limitations.
Materials and methods
JMJD2C and MALAT1 expression was assessed via RT-qPCR, western blotting, and immunohistochemical assays using OC cell lines, tissue from OC patients, and xenograft treatment with or without metformin. CCK-8 assays, flow cytometry, inductively coupled plasma mass spectrometry, luciferase reporter assays, and ChIP assays were employed to evaluate the impact of JMJD2C/MALAT1 on PR and the effects of metformin on JMJD2C. The effects of metformin in combination with JMJD2C knockdown were assessed in vitro and in vivo.
Key findings
JMJD2C and MALAT1 expression was higher in tissue samples from platinum-resistant phase compared to those from paired platinum-sensitive phase. JMJD2C upregulated MALAT1 in platinum-resistant ovarian cancer (PROC) cells by demethylating its promoter at sites H3K9m3 and H3K36m3. Overexpression of JMJD2C or MALAT1 promoted PR by activating NF-κB/P-gp and P38 MAPK/ERCC1 signaling pathways, with their knockdown produced the opposite effect. Metformin increased JMJD2C expression in tumor tissue, cell lines, and a xenograft model of OC; however, elevated JMJD2C expression attenuated the PR-reversal efficacy of low-concentration metformin. Low-dose metformin combined with JMJD2C-knockdown effectively reversed PR both in in vitro and in vivo, achieving better results than either treatment alone.
Significance
JMJD2C drives PR in OC by demethylating the MALAT1 promoter. Metformin upregulated JMJD2C expression, thus necessitating a higher effective dosage of metformin. Targeted inhibition of JMJD2C synergistically enhanced the efficacy of low-dose metformin in overcoming PR, thus providing a promising approach for addressing PR.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.