Ladder costs for random walks in Lévy random media

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Alessandra Bianchi , Giampaolo Cristadoro , Gaia Pozzoli
{"title":"Ladder costs for random walks in Lévy random media","authors":"Alessandra Bianchi ,&nbsp;Giampaolo Cristadoro ,&nbsp;Gaia Pozzoli","doi":"10.1016/j.spa.2025.104666","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a random walk <span><math><mi>Y</mi></math></span> moving on a <em>Lévy random medium</em>, namely a one-dimensional renewal point process with inter-distances between points that are in the domain of attraction of a stable law. The focus is on the characterization of the law of the first-ladder height <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> and length <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>T</mi></mrow></msub><mrow><mo>(</mo><mi>Y</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>T</mi></math></span> is the first-passage time of <span><math><mi>Y</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>. The study relies on the construction of a broader class of processes, denoted <em>Random Walks in Random Scenery on Bonds</em> (RWRSB) that we briefly describe. The scenery is constructed by associating two random variables with each bond of <span><math><mi>Z</mi></math></span>, corresponding to the two possible crossing directions of that bond. A random walk <span><math><mi>S</mi></math></span> on <span><math><mi>Z</mi></math></span> with i.i.d increments collects the scenery values of the bond it traverses: we denote this composite process the RWRSB. Under suitable assumptions, we characterize the tail distribution of the sum of scenery values collected up to the first exit time <span><math><mi>T</mi></math></span>. This setting will be applied to obtain results for the laws of the first-ladder length and height of <span><math><mi>Y</mi></math></span>. The main tools of investigation are a generalized Spitzer-Baxter identity, that we derive along the proof, and a suitable representation of the RWRSB in terms of local times of the random walk <span><math><mi>S</mi></math></span>. All these results are easily generalized to the entire sequence of ladder variables.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"188 ","pages":"Article 104666"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001073","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a random walk Y moving on a Lévy random medium, namely a one-dimensional renewal point process with inter-distances between points that are in the domain of attraction of a stable law. The focus is on the characterization of the law of the first-ladder height YT and length LT(Y), where T is the first-passage time of Y in R+. The study relies on the construction of a broader class of processes, denoted Random Walks in Random Scenery on Bonds (RWRSB) that we briefly describe. The scenery is constructed by associating two random variables with each bond of Z, corresponding to the two possible crossing directions of that bond. A random walk S on Z with i.i.d increments collects the scenery values of the bond it traverses: we denote this composite process the RWRSB. Under suitable assumptions, we characterize the tail distribution of the sum of scenery values collected up to the first exit time T. This setting will be applied to obtain results for the laws of the first-ladder length and height of Y. The main tools of investigation are a generalized Spitzer-Baxter identity, that we derive along the proof, and a suitable representation of the RWRSB in terms of local times of the random walk S. All these results are easily generalized to the entire sequence of ladder variables.
随机介质中随机漫步的阶梯成本
我们考虑一个在l随机介质上移动的随机行走Y,即一个一维更新点过程,点之间的间距在一个稳定定律的吸引域中。重点刻画第一阶梯高度YT和长度LT(Y)的规律,其中T为Y在R+中的第一次通过时间。该研究依赖于一个更广泛的过程类别的构建,即我们简要描述的随机风景中的随机漫步(RWRSB)。景色是通过将两个随机变量与Z的每个键相关联来构建的,对应于该键的两个可能的交叉方向。随机漫步S在Z上以i.i.d增量收集它所穿越的键的风景值:我们将这个复合过程称为RWRSB。在适当的假设下,我们描述了在第一次出口时间t之前收集到的风景值总和的尾部分布。这一设置将用于获得第一阶梯长度和y的高度定律的结果。研究的主要工具是一个广义的Spitzer-Baxter恒等式,我们沿着证明推导出。用随机行走s的局部时间表示RWRSB。所有这些结果都很容易推广到整个阶梯变量序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信