{"title":"Gardenin A alleviates alcohol-induced oxidative stress and inflammation in HepG2 and Caco2 cells via AMPK/Nrf2 pathway","authors":"Prashsti Chadha , Hiral Aghara , Delna Johnson , Dhrubjyoti Sharma , Mitalben Odedara , Manali Patel , Hemant Kumar , Vijay Thiruvenkatam , Palash Mandal","doi":"10.1016/j.bioorg.2025.108543","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic alcohol consumption triggers immune responses that lead to cell damage, contributing to alcohol-associated liver disease (ALD). Despite its prevalence, no FDA-approved treatment for ALD currently exists. This study explores the cytoprotective effects of Gardenin A (GarA), a polymethoxylated flavone, for protection against alcohol-induced oxidative stress and inflammation in HepG2 and Caco2 cell lines. GarA was isolated, characterized and, tested <em>in-vitro</em>, showing maximum cell viability at 10 μg/ml using MTT assays. Further, lipid accumulation assay, reactive oxygen species (ROS) estimation and nuclear morphology visualization was carried out using different staining techniques. RT-qPCR was employed to examine the expression of various pro- and anti-inflammatory cytokines, along with Cytochrome P4502E1 (CYP2E1) and Sterol regulatory element binding protein-2 (SREBP2) and tight junction genes crucial for gut barrier integrity. Moreover, ELISA was carried out for key protein targets such as AMPK (phosphorylated and total), TNFα, C5aR1, HO-1 and Nrf2. GarA caused a marked decrease in lipid droplets, ROS levels, and expression of pro-inflammatory cytokines. It showed anti-inflammatory and anti-oxidant activity and helped maintain the gut barrier and nuclear integrity. <em>In-silico</em> studies showed the conserved amino acid interaction and affinity of GarA with C5aR1, and TNFα, compared to the interactions with known inhibitors/activators, further corroborating the results. This study is the first to explore the effects of GarA on ALD, underscoring its potential as an anti-inflammatory and anti-oxidant agent targeting the AMPK/Nrf2 signaling pathway, suggesting its future as a promising therapeutic candidate for mitigating alcohol-induced liver and gut damage.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"161 ","pages":"Article 108543"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825004237","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic alcohol consumption triggers immune responses that lead to cell damage, contributing to alcohol-associated liver disease (ALD). Despite its prevalence, no FDA-approved treatment for ALD currently exists. This study explores the cytoprotective effects of Gardenin A (GarA), a polymethoxylated flavone, for protection against alcohol-induced oxidative stress and inflammation in HepG2 and Caco2 cell lines. GarA was isolated, characterized and, tested in-vitro, showing maximum cell viability at 10 μg/ml using MTT assays. Further, lipid accumulation assay, reactive oxygen species (ROS) estimation and nuclear morphology visualization was carried out using different staining techniques. RT-qPCR was employed to examine the expression of various pro- and anti-inflammatory cytokines, along with Cytochrome P4502E1 (CYP2E1) and Sterol regulatory element binding protein-2 (SREBP2) and tight junction genes crucial for gut barrier integrity. Moreover, ELISA was carried out for key protein targets such as AMPK (phosphorylated and total), TNFα, C5aR1, HO-1 and Nrf2. GarA caused a marked decrease in lipid droplets, ROS levels, and expression of pro-inflammatory cytokines. It showed anti-inflammatory and anti-oxidant activity and helped maintain the gut barrier and nuclear integrity. In-silico studies showed the conserved amino acid interaction and affinity of GarA with C5aR1, and TNFα, compared to the interactions with known inhibitors/activators, further corroborating the results. This study is the first to explore the effects of GarA on ALD, underscoring its potential as an anti-inflammatory and anti-oxidant agent targeting the AMPK/Nrf2 signaling pathway, suggesting its future as a promising therapeutic candidate for mitigating alcohol-induced liver and gut damage.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.